Consuming Web
ervices in AJAX

you need information on:

Web Serv

TS

ices Technologies

. 5o

Chapter 34

In the past, the Remote procedures were accessed using platform and language specific protocols, e.g. CORBA
used Internet Inter-ORB Protocol to activate remote types, Enterprise JavaBeans needed Remote Method
Invocation Protocol, etc. In the same way, each type of architecture would need a tight connection to access a
remote source. But with Web services this is not required at all.

Web services present a model by which tasks of e-business processes were distributed widely through Internet.
This model is not restricted to a specific business model. Web services are not graphical user interfaces, but can
be used into software meant for user interaction. They describe their inputs and outputs in a manner that the
second party can predict its functionality, how to call it, and the expected results. The Web services are reusable
software components and let the developers reuse basic elements of code made by others. There is a loose
connection between these software components, which allow manageable reconfiguration.

An often-cited example of a Web service is that of a stock quote service, in which the request asks for the current
price of a specified stock, and the response gives the stock price, This is one of the simplest forms of a Web
service. The Web services and consumers of Web services are nothing but typical businesses, making Web
services predominantly business-to-business (B-to-B) transactions. Any business can be the provider of Web
service, and at the same time be the consumer of other Web services. For example, a wholesale distributor of
spices could be in the consumer role when he uses a Web service to check on the availability of vanilla beans and
at the same time, in the provider role; when he supplies prospective customers with different vendors’ prices for
vanilla beans.

Another example of Web service is an auction engine, such as eBay's. This website provides successful auction
service. For this auction service, businesses or companies require to build the auction software from start or
alternatively send the customers of products to an auction website like eBay. Using Web services, eBay leverage
its auction process to other websites and applications for some fee. Businesses only need to subscribe to eBay’s
Web service and provide some lines of code to their applications to use Web service. Other uses of Web services
are payroll management, credit scoring, shipping, business intelligence and mapping services, etc.

Web Services Technologies

Web services use only HTTP which is a protocol all platforms agree upon. Web services are application
components designed to support interoperable machine-to-machine interaction over a network. This purpose is
achieved using a collection of XML-based standards and protocols, like Simple Object Access Protocol (SOAD),
Web Services Description Language (WSDL), and Universal Description, Discovery and Integration (UDDI) and
Representational State Transfer (REST). We will discuss all of them one-by-one.

SOAP

Simple Object Access Protocol (SOAP) is a protocol which allows applications to exchange information. Unlike
the language or platform specific protocols, such as Internet Inter-ORB Protocol ({IOP) or Java Remote Method
Protocol (JRMP), the SOAP is not a language or platform specific protocol. Tt allows communication between
applications running on different platforms. SOAP, unlike the IIOP and JRMP which are binary protocols, is a
text-based protocol and uses XML-based rule to allow applications mterchange information over HTTP. SOAP is
based on vendor agnostic technology, namely XML, HTTP, and is shated by all the platforms. It uses the Internet
application layer protocol as transport protocol and is used to access Web service.

SOAP Message

SOAP message is a well structured XML document. It is needed for interoperable machine to machine
interaction. It inherits all features of XML, like platform independence, human readability, and self documenting
format, etc. SOAP messages transform the way business applications communicate over Web with the notion of
Web services. The default namespace for SOAP envelope is http:// schemas.xmlsoap.org/soap/envelope.
Namespace qualified attributes can be used with these elements. SOAP namespaces take care of SOAP
message’s syntax details. Following are some of the rules that a SOAP message has to abide by

Q Itshould be written in XML.
O Itshould use the default namespace for the envelope.

1292

Consuming Web Services in AJAX

0 It should not have a DTD reference.
0 it should not have XML processing commands.

SOAP Message Elements

SOAP message elements are used to contain different types of information about a SOAP message and also make
it well structured. Before explaining the SOAP message elements, let’s have a look at the structure of SOAP
message.

The code given in Listing 34.1 presents you a structure of SOAP Message:

Listing 34.1: Structure of SOAP Message
<? xml version="1.0"7>
<spap:Envelope .
xmins:soap="http://wew.w3.0rg/2001/12/s0ap-envelope” .
soap:encodingstyle="http://www. w3 org/2003/12/soap-encoding™>
<soap:Header>

</so0ap:Readers
<soap: Body>

<spap:Faults -

_</soap:Faults:
</soap:Body>
- </sbap:Envelopes> - S s - :
From seeing this structure, we can deduce that the SOAP message consists of the folIowmg elements
O Envelope element
O Header element
O Body element
Q Fault element
Q@ We will now explain them one by one.
The Envelope Element
The Envelope element is the root element of a SOAP message and is an essential element. It recognizes XML
document as a SOAP message.
The code given in Listing 34.2 explains how an envelope element looks like:
Listing 34.2: An envelope Element
<?xm] version="1,0"?> . -)
<soap:Envelope S ' ' CLl
- xmThs : soap="http:/ ww. W3, org/2001f12/soap enve1ope
soap: encodmgstﬁe—"http / fomw . w3 . 0rg/2001/12/soap-encoding'>

Message information gues here . - L e,
</soap:Envelope> : A . e

The xmlns:scap namespace must have the value http F v w3, org/2001/12/soap envelope,

otherwise the application throws an error and does not accept the message. Any SOAP element can have

encodingStyle attribute. It defines data types used in the document.

1293

Chapter 34

The Header Element

The Header element contains application-related information about SOAP message. It is an optional element and
should be the first sub-element of envelope element, if included. The Header element can have attributes, which
specify how the recipient processes the message. Header elements act as contracts between the sender and the
receiver. The attributes of Header element are as follows:

O actor attribute

0 mustUnderstand attribute
O encodingStyle attribute
Let’s explore all these elements.

The actor Attribute
This attribute is used to address the Header element to one or mote specific intermediaries.

The mustUnderstand Attribute
This is used to specify whether the receiver has to process the header.

The code given in Listing 34.3 shows where these attributes are used:

Llshng 34.3: Use of Attributes
o <?uml version="1, 0“7>
Sl S ORE Enve}upe : h

e xmEng rsoap=""ht //www wi. org/ZOQlle/soapvenveTepe

soaprencodi ngSty'leé"http /}m w3, org/2071/12/ 2
L Le0ap Header>)
AHETEans: . R e
L xminsmehttp: !/www w3schno1s cam/transa
" soapractor="http://wew.wischools. comfap 1/. o
"‘-soap,.mustunderstands“l" T ERRR
234
</m:Transs
</soap;Header>

e

The mustUnderstand attribute can accept two values ather 0 or 1. We assigned “1” to mustUnderstand
attribute which means that the receiver will process the header element. The actor attribute enforces only the
header element of this message to reach intermediary represented by http:// www.w3schools.com /appml/ URL

The encodingStyle Altribute

The encodingStyle attribute is used to specify the default namespace for SOAP encoding and data types. In
Listing 34.3, http:/ / www.w3.org/2001/12/ soap-encoding is the default namespace.,

The body Element

It is an essential element. It contains the actual message to be sent to the rec1p1ent of the message. The message is
application specific and not part of SOAP standards. The code given in Listing 34.4 explains how the body
element looks like:

Llshng 34.4: The body Element

<7 xml version="1.0"7»
‘asoap:Envelope R
xmIns:soap="http: //wiw. w3 . org/ZOOl/lZ/soap—enveTope" Lo

‘ 'soap-en:udinQStyTea”http /fnww w3 org[zﬁGlleisoap_encod1ng“

. <soap:Body> e
am:GetPrice xm1ns m=“http f/www.u3schools com/pr1ces"> L e
“amiTtem>Shoes</m: Item> : . ' '

</miGetPrices
</soap:Body>
</soap:Envelopes

1294

Consuming Web Services in AJAX

Listing 34.4 requests the price of the Item ‘Shoes”. It receives some SOAP response.

The Fault element
An error message from SOAP message is present inside a Fault element. A Fault element can occur once in a
SOAP message and, if present, it must be a child element of body element. Table 34.1 lists the sub-elements of
the Fault element:

Table 34.1: Sub-elements of Fault Element

<faultcode> It provides a code fo identifying the fault. Itisa ndatory element
<faultstring> It provides a human-readable description of the fault. It is also a mandatory element
<faultactor> It provides an indication of the system that was responsible for the fault
<detail> It provides information related to faults that occur due to errors associated with the Body
element of the request message

The Table 34.2 lists the values that the < faultcode> element takes with their respective causes:

{ Table 34.2: Various Fault Code Values and their Respective Causes

VersionMismatch Invalid namespace is used
MustUnderstand Immediate child element is not understandable
Client Incorrect information in message
Server Internal error
SOAP Example

Let’s take an example in which a GetPrice request is sent to a server. The request has a Name parameter. The
namespace for the function is http://www.abc.org/iter and HTTP is the protocol that communicates over
TCP/IP. A SOAP request can be HTTP GET or POST request and the SOAP message is a combination of HTTP
and XML.

The code given in Listing 34.5 shows an example of SOAP request:

L:shng 34.5: The SOAP Request
POST "/item WTTR/1.1 -
Host: "189.123.345.239 E ' ' S
.-CQntent-Type apphcau on/ soap+xm1 charsetr—utf 8

- Content-Length: 20& : ' R
<?xml version="1.0"?>
,<s0ap; Envelope. i - . ;

- xmly soap=“htt,p !/M f2_00 12/ ap«-enveiope“ .
'ﬁ.soap'encadimsty]eé"http:'/fmw'w3 org/ 2001/12/so0ap- encodmg"> s

<sqap: Body xmins: ms"http //m abc. org/item 3
«miGetPrices . -
<n:Name>Shoes:
iefmiGetprices o
</SoapiBodys
</soap:Envelopes

The Response has at least two H'I'I'P headers—Content—Type and Content- bength The flI‘St header represents

MIME type and character encoding used for XML body of request or response. The second header tells us the

number of bytes in request or response. The code given in Listing 34.6 shows the corresponding SOAP response

of this request:

1295

Chapter 34

Listing 34.6: The SOAP Response

HTTP/1.1 200 OK
Content-Type: application/socap+xml; charset=utf-§
Content-<Length: nnn ' o
L?xml version="1,0"7»
<s0ap:Envelope
xmns:soap="http://www.w3.org/2001/12/s0ap-envelope”)
soap:encodingStyie="http://www.w3.org/2001/12/s50ap-encoding”>
<soap:Body xmins:m="http://www.abc . org/item"> B
<m:GetPriceResponses
<m:Price>300.00</m:Price>
</m:GetPriceResponse>
T </s0ap:Body>
</soap:Envelope>.

In this case, the status code of the response is 200 which represents ‘success’. Otherwise, the status code sent is
400 which mean that the server is not able to decode the request.

WSDL

In Web services, we try to make it as abstract as possible. Web service registries do not make use of a particular
description language essential. Description of service can be written in XML, plain text, etc. WSDL is now
becoming a standard for Web service description. Many tools support it and have the capacity to generate WSDL
documents from Java code and vice versa. WSDL document consists of the following six elements:

Q

Q

Definition— WSDL document’s definitions are root elements, which consist of namespace definitions.
WSDL specification recommends the use of XML schema definitions. You can recognize data types of each
element during encoding an XML document in this standard.

Type—Types are data type definitions used in message communication with the service. In other words,
how are passed parameters to or returned values from methods encoded in neutral way? XML schema has a
set of simple types, like strings, double, and you can create complex types based on simple ones. There is
another alternative to encode data types inside a WSDL document. WSDL documentation suggests one
based on namespace http: //schemas. xmlscap.org/wsdl/

Message —Message defines the messages exchanged with the service. Corresponding to each Web service
message, the message section contains a message element which further contains sub elements.

portType —WSDL port describes the interfaces exposed by a Web service. It defines Web service, operations
to be performed, and messages to be involved.

Binding — Binding specifies the wire protocols used to access each portTypa. A portType can have many
bindings. In other words, a service might provide access to its methods {operations) via numerous different
protocols, such as SOAP, HTTP and RMI-IIOP

Service —Service describes the set of ports to use when invoking a service. A service can have many ports,
with each port having a name and a protocol binding.

WSDL Port defines a connection to Web service. It may be understood as a module in programming language.
Each operation corresponds to a function in programming language. There are four types of operations defined
by WSDL. Table 34.3 lists all these four types of operations:

Table 34.3: Various Operation Types

One-way l represents that the message is only received

Request-Response It represents that for each request, there is a response x
Solicit-Response It represents the delay in generating response " j
Notification Tt is a message from the server to the client in which the server expects no response t

1296

Consuming Web Services in AJAX

In one way operation, the message is only received and no acknowledgement is generated. The code, given in
Listing 34.7 shows one way operation:

Listing 34.7: Part of WSDL Document which Sends a Message

<message name="newItemvalues"s>
<part name="Item" type="xs:stri ng"/>
<part name="value" type="xs:string"/>
</message> P :
<portType name="groceryItems”s
<operation name="setItem"> :
<input name="newItem" message="newItemvalues"/>
</operation>
</portType > . .
In Listing 34.7, the groceryItems port defines a one way operation called setTtem. The setItem operation
allows the input of new grocery items messages using a newItemValues message with input parameters Item
and value. No output sub element in the operation exists. The code given in Listing 34.8 shows an example of
request response operation:

Listing 34.8: Request Response Operation
<message name="getItemRequest™>
<part name="ltem" type:."xs:str'ing“/’>
</message>
«nessage names' getItemResponse >
<part name="value" type="xs:stri ng"/) .
</message>
<portType name=' gr‘oceryxtems 5
<operation names=" ‘getItem™s
<input message=" getItemRequest />
. <output message= getItemRespnnse />
</operation> - ..)
</portType>- o o o : _ o
In Listing 34.8, the groceryltems port defmes a request response operation called getItem The getItem
operation needs an input message called getItemRequest with a parameter called Ttem and will return an

output message called get ItemResponse with a parameter called value.

Bindings define the message format and protocol details for a Web service. The code, given in Listing 34.9 shows
the usage of bindings:

Listing 34.9: Use of Binding
<message names=" getItemRequest FIE
<part name=" Item type-’ s: 5t'1ng"/>
.</messages :
<anessage name=" getItemResponse >
<part name="value". type= XS54 str1ng />]
</message> L
<portType name=" grocery!tems >
<operation name="getItem's
<input message=" get:temnequest“lz'
<Output message= getxtemkesponse />
</operation> :
</portTypes.
<binding type=' groceryItems name—“b“
<soap:binding style="document’"
transport="http: //schemas xmlsoap arg/soap/http" />
<operatiorn» :
<soap:operation snapAction-“http //abc com/getltem“/>
<input>
<soap: body use—“]‘itera]"h)
</input> :
<Gutputs> :
<soap:body use="literal' />

1297

Chapter 34

L FOUEPYES f o
</operation>
</binding> . .

The binding element uses two attributes—name and type The attnbute name specmes the name of the
binding and the type of attribute specifies the port for the binding.

The soap:binding element also uses two attributes - style and transport. The style value can be one of rpc and
document. The transport attribute specifies SOAP protocol to be used. For each operation, the SOAP action must
be defined.

The cade, given in Listing 34.10 shows the complete WSDL file:

Listing 34.10: The WSDL File
: «sd} definitions name="namemtoken"? targetNamespace="URI"> SR
: ximpore namespaces"URY" locationu"uax“/> " : :
awsdl dqcumnta.t;m....b? oy
<wsdl:types> 7. T
<wwsdl:documentation ... /> 7o
<xsd:schema /f>#
o o</wsdl:types> -
wsd] .message names"name >

<fwsdl: mpub
~swsdlrourput’ nessage:"namel"
uewsdls docwnentation_ wii < f, T
L</wsdloutputs b G
L ewsdl:fault name="name"” messag ;
 xsd documentation L. ., /> 7 _
“<fwsdl: Fault>

</wsdl:operation>

L efwsdl; portType>
LohoamsdtiserviceType nam"nm % *
- awsdliportType names! nmel"b *.:
oe/wsdliserviceTypes .
‘<wsd1 hmdi name=" name’

i N

type " amel

“ ‘Jdﬂshﬁ dncmentatian
i _: s bmd‘ing 6eta1'ls

e b‘indinwmﬂs'w * ', =
."dwsd'i outplib R :

1298

Consuming Web Services in AJAX

-~ <fwsd] :operation>
</wsd1:binding>
_msd'l service names" an
© <wsdl: documentatwn)
<wsd1:port namea"name“ h’ind"mg— namel":- w0
- awsdl -doc(mentauon]> i S

. <fwsdl:port>. . - :
</wsdl:service> . .

</wsd1 definitions>.

UDDI

UDDI stands for Universal Description Discovery and Integration. 1t is a directory for storing information about
Web services and communicates using SOAP. It uses WSDL to describe interfaces to Web services, e.g. if any
industry wants their services to be used by others, it registers its service in UDDI directory. Users then search for
the UDDM directory to find the service. When an interface is found, users can communicate with the service.

A

Earlier, businesses neither had the standard to send information about various products and services nor had the
method to integrate different systems. UDDI helps in solving many problems. It enables us to choose the correct
business from online ones and then start it. It alse tells us how to find new customers and make services in
secure environment.

UDDI is a combined effort of many platform and software providers. UDDI can make Web service a resource
centric Web service. It has an entity businessEntity which represents an organization. Earlier, businesses were
recognized by UUID (Universal Unique Identifier). The UUID is a 128 bit number, which is used to recognize
entity (may be business) on internet. For identifying businesses by URI, experts are forced to make
businessEntity in the form of an XML document with URL

UDDI ATI has the get_businessDetail method. This method is redundant and can be removed from APL
HTTP also has corresponding GET method. You can perform the same operation by using HTTP GET method.
UDDI has many get_methods that work on data objects, such as business services. These data objects can be
represented by XML documents and methods can be eliminated. Everything in UDDI database can also be
recognized by URI addressable XML resources. Experts are focusing on use of XML in UDDI system. A UDDI
entry in one registry points to a UDDI entry in another. When a business changes its information, it registers that
change in UDDI. Elements in a single UDDI registry refer to each other, but are not able to refer to objects
elsewhere on the web. If the businessEntity documents are written in XML, then it will be easy to add elements
and attributes.

Other methods of UDDI can also be removed. The UDDI has the delete business method. HTTP also has
corresponding DELETE method. You can perform the same operation by using HTTP DELETE method. You can
now perform HTTP delete. The save_business method is used for uploading new businesses. A similar
method in HTTP is PUT or POST. The find_business method is similar to search engine sites. HTTP URIT
takes a set of search parameters and returns an XML documnent representing matched entities.

Hence all methods in UDDI API can also be implemented by HTTP-based URIs. This produces another type of
architecture for representing Web services of businesses, called REST.

REST

Earlier, business organizations connect to internet using SMTP and FIP clients, and servers to send messages,
text files, etc. Now Internet is used to put information of businesses into Web Framework. Technologies used by
carly Web Framework are HTML, HTTP, and URIs. These technologies are not found successful to integrate
Web services with each other. Web services are now based on an architectural style known as Representational
State Transfer (REST}). The REST architecture is focusing on XML aspects so that Web services can easily
integrated with each other.

Roy Fielding’s definition of REST is as follows:

“Representational State Transfer is intended to evoke an image of how a well designed Web application behaves:
a network of web pages (virtual state machine), where user progresses through an application by selecting links

1299

Chapter 34

(state transitions), resulting in the next page (representing the next state of the application) being transferred to
the user and rendered for their uses.”

Motivation to define REST is to collect successful characteristics of the Web. There is no such term as REST
toolkit or REST standard. It is just an architecture, which you can follow during the designing of your Web
services. Examples of REST based Web services are search and online dictionary services. REST uses standards
like HTTP, URL, XML/HTML/GIF, text/xml, text/html, image/ gif, etc. The main concept of REST based Web
service is a single unifying namespace of URIs to recognize resources. URIs recognizes resources, which are
logical objects. These resources are sent across the Web in the form of HTTP messages. The entire Web is now
considered as a set of resources. A resource can be the one you like, e.g. ABC corp. has declared a resource 123.
Users can access it by typing following URL:

http:/ /www .abc.org/ product/123

Suppose ABC, Inc has installed some Web services to allow its customers to get a list of Items, get detailed
information about specific Items, and finally submit a purchase order. ABC, Inc provides Web service URL of a
list of items to the client. Now the client knows the URL to access a XML document containing a list of items. The:
Web service used for producing a list of items is transparent to the client. Therefore, the organization can change
the implementation of this resource. The XML document recelved by the cllent is as follows
<?xm} version="1.0"7> ; S
<p:Items xmins:p="http://wew. abe.com" :
xmins :x1inks"http://vew.w3.0rg/ 1999/x11nk“
<Item id="123" ,xh _hrefa"http //ww abc comlltemsjlz?»"/:p
<ktem fd="124"
‘<Ttem id="12%" nk;he . _
<Itém jd="126" x'hnk href—"http"//mw abc om 'temsjl 67/
</p:tems> Sk T : :
The XML document has links to retrieve detalled mformahon about each item. We have URLs for a spec1f1c [tem.
From these URLs we can get detailed information about a particular item. Suppose that the URL is
http://www.abc.com/Items/123, and then the Tesponse document recewed by chent is as follows:
a?xml version="1.0"7> e : S R : :
<izItem ¥minsip="http: /fwww.abc. com" R
coxmlnsixlinks"http://wew. w3. orgf1999/xlinl("
¢ -<2tem-ID3123</Ttem-ID> - :
J<NamexBag</Namex : :
<Description>This bag is manuFactured w'ltlﬁﬂ ergamzatwn abc </De5cr1 ptmn>
<Specification xlink:href="http://www. abc com/1 tems/lZB/spemﬁ cat1on"/>
<UnitCost: currency="usu“>10</un1tcost> B
<Quant1ty>10<}@uanti ty> : ;
ofieItems : : - L :
Each response document enables the chent to get more mformatlon about that particular item. Finally, the user
submits a purchase order, which is in the form of XML document, such as PO.xml, to the Purchase Order
service on the server. After submitting a purchase order, the Purchase Order service also provides a URL so that
the client can interact with the service. With the help of this URL, the client can update or edit purchase order
later. Hence, the Purchase Order service is shared between the client and server.

Let’s now discuss the characteristics of REST based Web services.

REST Web Services Characteristics
Web services based on REST architecture encapsulate a lot of functionality, Here are the characteristics of REST:

O Pull based interaction between the client and server means that the client actively requests changes on
server-side, based on some time interval. The client will not automatically get recent changes about some
activity continuously changing on server-side, In this interaction, the user interface matters are kept
separate from data storage matters. This enhances portability across various platforms

O Stateless nature means that every request from client to server has information required to understand the
request and the session state is maintained on client-side

1300

Consuming Web Services in AJAX

O Responses should be able to cache. Benefit of caching is that it removes the need for further interactions and
results in greater efficiency and scalability

"0 Allresources are accessed using uniform interface
QO Resources can be named using URL
DQ Client state can be changed from one to another
REST System is divided into layers and each layer cannot see the functionality of other layers, except that of

adjacent layers. There are proxy servers between clients and resources for features like security. 1t permits to
increase client functionality by downloading and executing code in applets.

Flements of REST Architecture

REST does not consider details of component implementation since it is inclined on roles of components,
restrictions on their mutual interaction, and representation of important data elements. It includes restrictions
upon components, connectors, and data that make base of web architecture.

Data Elements
Unlike the component implementation style where all the data is encapsulated within and hidden by the
processing components, the nature and state of data elements is a key aspect of REST. When a link is selected,
the information needs to be moved from the location where it is stored to the location where it will be used, in
most cases, by a human reader. An architect can do three things with data:

0 Display data where it is found and send its image to the receiver.
O Encapsulate data and rendering engine and transfer both to the receiver
2 Send raw data with metadata

But each action is not sufficient. REST provides a combination of these actions by understanding shared features
of all data types and provide limited common interface. REST components exchange representation of a resource
in a format of standard data types, This interface decides whether the representation is in the same format as that
of raw source. It permits information hiding through common interface and hence allows the use of
encapsulation. Table 34.4 lists the elements of REST:

Tabie 34.4: Data Elements of REST

s
Resource . Target of hyperlink
Resource identifier ' URL, URI
Representation JPEG image, HTML document
Representation metadata Last modified type, content type
Resource metadata Alternatives, source link
Control data If-modified-since, cache control

Now let’s learn about all these data elements in more detail.

Resource
Resource can be any information like image, person, service, a set of other resources, etc. Resources can be static
or dynamic based on the value set investigated after their creation at any time. Semantics of resource play a role
in differentiating one resource from another. Version of software product is a dynamic resource because it keeps
changing.

1301

Chapter 34

Resource Identifiers
As the name indicates, a resource identifier is the identity of resource to recognize it in interaction between
various components. The naming authority takes care of keeping semantic validate of resource over time. The
quality of identifier depends upon the amount of money spent to maintain its validity.

Representations and Representation metadsta

Representation is a sequence of bytes in addition to its metadata to explain those bytes. Representations are used
to gain current or expected state of resource. Metadata is in the form of name/value pairs where name is a
standard of semantics of value.

Resource metadata
It is the information related to a resource, but not specific to representation. Representation of metadata and
resource metadata comes along with response messages.

Controf data

It defines what the message between components is meant for. It is used to override the default functionality of
connectors, e.g. Cache property can be changed with control data. A representation can tell us about the input
data within the user’s query form or error status for a response according to control data.

Connectors

REST uses connectors for the processes, like manipulating resources, and exchanging representations. These
connectors use general interface for communication between components, which means that the underlying
implementation can be changed without affecting users. They also manage network communication to enhance
responsiveness. Table 34.5 lists the REST connectors:

| Table 34.5: The REST Connectors
Client " Binwww
Server Apache API
Cache Browser cache
Resolver DINS lookup, bind
Tunnel SSL

Stateless nature of REST interactions has many benefits, such as decrease in consumption of resources, let
interactions process in parallel, intermediary can understand and view request separately and finally reusability
of cached response. Connector interface in parameters may involve request control data, identifier of target, etc.
The in parameters are made up of request control data and identifier of destination of request. The out
parameters are made up of response control data and optional representation.

The client makes a request to begin communication and the server responds to the request and listens to
connections. A cache connector is placed inside the interface to client or server connector. It is implemented
inside address space of either client or server connector. Cache on client-side is used for network communication
and on server for buffer activity of producing a response. A resolver converts the complete resource identifier or
part of them into IP address to create connection between components. The URI contains DNS name to recognize
naming authority for the resource. The last connector type is tunnel that circulates communication across
connection boundary. It disappears when the communication ends on both the ends.

Components

Components are classified on the basis of their role in application action. An origin server uses a server
connector to handle namespace from a requested resource. It provides general interface to its services. Table 34.6
lists the REST components:

1302

Consuming Web Services in AJAX

Table 34.6: The REST Components

i
Origin server Microsoft II5
Gateway CGI
Proxy Netscape proxy

: User agent Internet explorer

A proxy acts as an intermediary interface to provide services, like data translation, performance enhancement,
and security enforcement. A Gateway is known as reverse proxy. A user agent makes use of client connector to
begin a request.

Rules of REST Web Service Design

The designer takes two approaches to design something. The first approach is to start from a blank slate and
create an architecture till it includes all the requirements of the proposed system. The second approach is to start
from system requirements and then incrementally apply restrictions to elements of system. The second approach
focuses on understanding of system context. REST is an architectural style of web. If the following principles are
followed, the User services perform well in web context:

@ Recognize all of logical entities such as Items list and detailed item information.

Each resource is named using a noun URL, e.g. http: //www.abc.com/items/123

Classify resources on the basis of whether users can only access the document or are able to modify it.
Resource representations should be free from side effects.

Add hyperlinks to get information in details.

Data to be exposed is designed gradually.

Specify the format of response data using a schema.

Q The methods, which are used for invoking Web services, are explained in detail.

REST Views
By now you must have understood the elements of REST architecture and its design principles. Now let’s
discuss how elements build up this architecture. There are three types of views used to design principles of
REST.

| R R S A

Process View
The process view depicts interaction relationships between components from the path of flow of data. Separation
from data storage concerns make component implementation easier, decreases complexity of connector
semantics and enhances performance tuning, and scalability of server components. Hierarchical system let
proxies, gateways, and firewalls play their role during communication at some point that helps in translation
and shared caching,

Connector View
It focuses on an activity of communication between components. To choose a suitable communication
mechanism, the client connectors investigate the resource identifier. In case the identifier is a local resource, the
client may configure with an annotation filter. REST restricts interface between components and scope of
interaction, but does not constrain communication to a specific protocol. Interaction with services offered on
servers using protocols ftp and gopher, restrict to semantics of REST connector.

Data View
This view exposes the application state as data flows through the components. It sees an application as
structured information and control alternatives by which the user does a required task, e.g. an application for
searching for a word in online dictionary. Interaction among components is in the form of messages having

1303

Chapter 34

dynamic size. For control semantics, small grain messages are used. For the rest of the application, big grain
messages are used.

REST gathers control state into the representations received. The pending requests and topology of eonnected
components define the application state. Application is in a steady state when there are no pending requests and
responses to all recent requests are received properly. Received user performance is measured using latency
among steady states. Latency is defined as the duration of time between the click on hypermedia link on a web
page and the point when the required information for the next page has been displayed. The application state
may consist of representations from various servers and is handled by user agent.

Design Decisions

Web service technologies enable you to make interoperable interface for a new or an existing application.
Designing Web service for an application is kept separate from designing Business logic of the application.
Consider a functionality of Web services, in general, before we look at the issues involved in designing Web
service. A typical Web service performs the following tasks:

Make an interface that clients access to make requests to service

Publish the service details

Receive requests from clients

Build and send response to client

To accomplish these tasks, the following steps are used for designing a Web service:

Do0odooo

Decisions about making interface for clients include that interface must specify the type of requests by
clients to use the service. Other decisions include type of end points, use of SOAP handlers, and effects of
design decisions on interoperability.

O Decisions on publishing (to make your service available to clients) the interface include that Web service
providers can either restrict their Web services to authorized clients or make it public and register it with
public registry.

O Design your service to receive a request from the client,

@ Decide how to forward the request to Business logic.

2 Decide how Business logic handles the request. There are many factors to be considered before sending a
response to the client. :

Recover from exceptions

Now let’s consider Web service in terms of high level layers as shown in Figure 34.1. Service interaction layer
makes end point interface for clients, publishes Web services, and forwards request to Business logic. 1t also
handles format incompatibility through mapping between documents from clients, e.g. XML, and that of
Business logic, e.g. objects.

Service Implementation

el

/' Service Service

",

Service Client Interaction Processing

Layer Layer

Figure 34.1: Showing Interaction between Service Client and its implementation

The Service processing layer has Business logic to process requests from service client. It takes care of integration
with EIS and another Web service. This partition into layers divides responsibilities and encapsulates pre- and
post- processing logic into Service interaction layer. ‘

1304

Consuming Web Services in AJAX

Service Interaction Layer Design

All clients manipulate the service through entry point interface of service interaction layer. This layer has major
responsibilities, like receiving client requests, forwarding requests to suitable Business logic, and making and
sending responses. Let’s now discuss the various responsibilities that this layer takes.

Designing the Interface
Interface definition of a Web service can be developed in two ways:
0 Java to WSDL — Begin with collection of Java interfaces of the Web service and creates WSDL of service for
clients to use.

O WSDL to Java— Begin with a WSDL document having details of Web service interface and use it to create
Java interfaces.

Interface Endpoint Type
it depends upon whether the Business logic of the service is nested within web tier or E]JB tier. Use JAX-RPC
service endpoint in case of web tier, otherwise use EJB service endpoint. Some mere points that should be
considered while choosing an endpoint are as follows:

4 An EJB service endpoint is implemented as a stateless session bean and EJB container serializes the requests.
So there is nothing to worry about. For the JAX-RPC endpoint, there requires hard-coded synchronization.

d EJB container handles concurrent client access, but JAX-RPC need to hard code it.

a JAX-RPC executes in a Web container. Here, we cannot start the transaction by declarative means, so we
have to use JTA in this case. But the EJB container has container-transaction element for transactional
context.

@ Different Web service’s methods are accessed by different clients. For this, we need to consider the method
level access permissions. ‘

O Since JAX-RPC runs in the Web container, it has access to HttpSession object. This object can be used to
store the client state. On the other hand, EJB service endpoint has no access to Web container state.

Service Particles
Designing a Web service interface includes determining each method’s parameter, return values, and generate
errors. Business processes that exchange documents result in a coarse grained interface. Coarse grained
operations result in lower network overhead and less flexibility. Finer grained operations do exactly the
opposite. The design should be a mixture of coarse grained and finer-grained operations. Try to consolidate
related operations into a single Web service operation.

Types of Parameters
For designing Web service interface methods, select types of parameters with caution. Figure 34.2 explains how
binding takes place between various types of parameters:

Pammeters with

Implicit standard tvpe mapping
binds
Pamrneters without
Web - standard permapping lg..
SOAP request " Service Emplicit
H{desenalizer

Tesponse Pamarneter: endpoirt

Retam o ¢giteed

SOAP dooumnem
fragment

ML Dary

P

bmdmng

Figure 34.2: Binding Parameters and Returning Values in case of JAX-RPC
1305

Chaptor 34

Both the method call and its parameters are sent in the form of SOAP message between the client and service.
Serialization class is created for conversion among XML and Java representation. SOAP request parameters
converted using standard type mapping are bound implicitly. For parameters of method calls in Web service
interface, parameters with standard type mappings are selected. Parameters converted with explicit binding
need no standard type mapping. Serializers and non-serializers support non-standard type mappings.
Alternative to this is to pass parameters as SOAP document fragments in service endpoint interface. Parameters
should be mapped to XML and Java objects at appropriate times. There are cases like business-to-business
transactions in which XML documents are passed as parameters.

Interfaces with Overfoaded Methods

You can overload methods in service interface. For this, there are two approaches used. Consider an example of

news services. In a news service, the client can search information by zip code or city name. In case of Java to

WSDL, NewsService interface looks like the one shown in the following code:
public interface NewsService extends Remote {

public String getNews(string <ity) throws RemoteExceptmn~

public string getNews{int z1p) thmws RemoteExceptmn- S

After defining the interface, we run vendor provnded tool to create WSDL from interface. The wscompile tool of
J2EE 1.4 SDK creates WSDL from NewsService interface. Listing 34.11 has four messages. The first two messages
are request and response parts of first SOAP message and the second two messages correspond to the request
and response parts of the second SOAP message. The code given in Listing 3411 shows the use of
WeatherService interface with JAVA to WSDL approach:

Listing 34.11: The WSDL File
<?xml version="1.0" encoding="uTF-§"7> - o
<definitions name="NewsWebServ1ce" RO UPCEREE
L xtypesf> o
'-message ‘namas" NewsSerwce__getNews T
: iXpart. nameﬁa"mt_,l type== “xsd: 1nt"/>
: '</message> '
: mtssage names= NewsSerwce_getNewsResponse > .
o “part - name-“result" typen"xsd str'mg"/>
L afmessages. : ; s
Y cmessage Names" Newsserwca__getuewu“:» -
.<part names"String_1". types"xsd: strmg"b
<,!message>
<message name="NewsServi ce__getNewsZResponse"'>'
<part name="result" type="xsd:string"/>
</messager : : L

</definitions>
The second approach is WSDL to Java. Listing 34.12 shows WSDL hle for WeatherSerwce interface with
ovetloaded methods avoided. The following WSDL file includes methods getWeatherByZip and
getWeatherByCity which take integer and string parameter, respectively. The code given in Listing 34.12,
shows code for the WSDL file:

Listing 34.12: The WSDL File

<?xmlversion="1.0" encoding="uTF-8"7>

<defimitions name="NewswebService" . ..»"
<types/> : i
wmessage nage=' Ne\'tssarw ce_.getuewssyrl p">
e <paArt names" 1m:_1"_ type= xsd 1nt />-

e q/messag» ; : =

; <message namea"newsservice._getnewsay21pﬂesponse PO

L <part name="result” typez"xsd str1ng"/> :

- e /messages . o

‘<message nameu"ﬂewssemnce*get_awssymty b

1306

Consuming Web Services in AJAX

. <part name="String. 1" type="xsd: string’/>

| </message» SRR
<message name="Newsse tNewsByCityResponse”>
ST Tepart name sdistring"/>
</messages- I
</definitions> o

Each message in the code has a unique name. These different message names convert into overloaded method
calls in the interface.

Handling Exceplions
Similar to Java application, Web service application may generate exceptions and these should be caught.

For a Web service, exceptions are also sent to client as part of SOAP messages just like the requests and
responses. There are two types of errors thrown by Web services applications —irrecoverable and application-
specific. The cause of irrecoverable system error is failure in network connection, and the application-specific
error can be anything related to the application. An example of application-specific error in NewsService
scenario is 7ipcodenot FoundExcept ion. This kind of error is known as Checked Exception.

The SOAP documentation has a message type fault that allows exceptions to be passed as part of SOAP message.
A SOAP fault denotes system-level exceptions, such as RemoteException. The WSDL fault denotes service
specific exceptions.

Interoperability

W51 stands for Web services interoperability organization and helps in achieving interoperability between
different platforms. WS-I basic profile adheres to standards SOAP, WSDL, UDDI and XML.

WSDL uses two types of messaging styles—the rpc and the document. The rpc message style specifies RPC
based operation where messages contain function signatures. The document style means operation is document-
based where messages contain documents.

WSDL supports two other mechanisms--literal and encoded. If the value of use attribute is literal, it means data
is formatted in accordance with the general definitions of WSDL document. If the value is encoded, then the data
is formatted on the basis of encodings in URI specified by encodingstyle attribute.

How to Receive Requests
In Web service calls, passed parameters can be Java objects or XML documents. In case of Java objects, Web
service needs to perform application-specific validation. For XML docurnents, service endpoint must validate
incoming XML document against its schema. If the processing layer handles only objects and the interface
accepts XML documents, then map XML documents to objects, as shown in Figure 34.3: ’

Web Service Endpoirt
XML Dociznert
.'é Preprocessmg
Web E ¥ 1, Validation ™
Service > E % 2. Transformation Service Processing
Clients Z ; 3. Deassarbline ' Laver
e :
= Java type mput
parmeter B
Service Interaction Layer

Figure 34.3: Handling Requests in Web Service Interaction Layer

1307

Chapter 34

In Figure 34.3, Service endpoint acts as an entry point when handling requests and security techniques; so that
only authorized users, which have access rights to the published service, can access service. As said earlier,
parameters for Web service method calls can be XML documents or Java Objects. XML documents are validated,
transformed, and finally mapped to application specific objects before sending them to the Service Processing
Layer. Any exceptions raised, during validation and transformation of XML documents, are handled in the
Service Interaction Layer.

"How to Delegate Requests
Requests are classified according to the time they take. They are broadly classified into two categories. The first
category includes requests that take very less time to process, and therefore, the client may switch to wait state
for receiving a response before proceeding further, The second category of requests is those requests that take
long time in processing, In this case, the client would not like to wait till the processing is complete.

How to Formulate Response

After the Business logic finishes its processing, the response is generated by constructing the method call return
values and output parameters in interaction layer, as shown in Figure 34.4:

Web Service Endpoirt
B XML Document
B .
E Postprocessing
2 o
Web] g 1. Transformation [)
Service 2 3 2. Caching Service
. b £ 2 . Processng
Chients o 3. Assembling
& Response Laver
54
Java tvpe outpit
.
pammeter
Service Interaction Laver

Figure 34.4: Web Service Response Processing

Response assembly and XML document transformations occur in one location in case the document returned to
the cailer has different schema from internal schema. Data caching is implemented by keeping the functionality
near endpoint. Each service will render responses in formats supported by different client types.

Processing Layer Design

Business logic in this layer applies to Web service request. Business logic design issues include where to perform
Logic—either in Web tier or in EJB tier, Bean managed persistence or Container managed persistence, etc. Keep
processing the layer independent of the interaction layer in order to support a variety of clients, such as web
clients, Web service clients, and simple java client. Bind XML documents to Java objects in the interaction layer
when the service Business logic does not require to work on XML document. This process occurs in the
interaction layer and, hence, the processing layer can support different types or versions of XML schema,

Other Technologies

After discussing Web service related terms and REST architecture, we will concentrate on how Java SE 6 has
introduced new APIs and tools to support the creation and implementation of Web Services.

Java API for XML based RPC (JAX-RPC)

Java API for XML-based RPC (JAX-RPC) is a Java API used for developing and using Web services, A collection
of procedures that can be called by a remote client over the Internet is an RPC-based Web service. A client
written in a language other than Java programming language can access a Web service developed and deployed
on the Java platform with JAX-RPC. Conversely, a client written in Java programming language can

1308

Consuming Web Services in AJAX

communicate with a service that was developed and deployed using some other platform. It is JAX-RPC’s
support for SOAP and WSDL that makes this interoperability possible. SOAP defines standards for XML
messaging and the mapping of data types so that applications adhering to these standards can communicate
with each other. JAX-RPC is based on SOAP messaging. A JAX-RPC remote procedure call is implemented as a
request-response SOAP message. JAX-RPC’s support for WSDL is the other key to interoperability.

Java Architecture for XML Binding (JAXB)

Java Architecture for XML Binding (JAXB) renders a convenient way to bind an XML schema to a
representation in Java code. You can easily incorporate XML data and processing functions in applications based
on Java technology without having to know much about XML itself.

JAXB is basically a Java technology that enables you to generate Java classes from XML schemas by means of a
JAXB binding cornpiler. The JAXB binding compiler takes XML schemas as input, and then generates a package
of Java classes and interfaces that reflect the rules defined in the source schema. These generated classes and
interfaces are in turn compiled and combined with a set of common JAXB utility packages to provide a JAXB
binding framework. The JAXB binding framework renders methods for unmarshalling XML instance documents
into Java content trees and for marshalling Java content trees back into XML instance decuments.

Java API for XML Messaging (JAXM)

The Java API for XML Messaging (JAXM) provides a standard way to send XML documents over the Internet
from the Java platform. It is based on SOAP 1.1, which defines a basic framework for exchanging XML messages.
By adding the protocol’s functionality on top of SOAP, JAXM can be extended to work with higher level
messaging protocols, such as the one defined in the ebXML (electronic business XML) Message Service
Specification.

Java API for XML Registries (JAXR)

To access standard business registries aver the Internet, the Java API for XML Registries (JAXR) provides a
converient way. Business registries are often described as electronic yellow pages because they contain listings
of businesses and products or services the businesses offer. JAXR gives developers writing applications in the
Java programming language, which is an uniform way to use business registries that are based on open
standards (such as ebXML) or industry consortium-led specifications (such as UDDI).

Relationship to Other Java APIs

O When we implement JAXR, the other Java APls can also be used which are necessary to complete the
required implementation of the scenario.)

O Communication between the JAXR providers and registry providers is through SOAP based RPC, like
interface (for example, UDDI). Here, the Java API for XML-based RPC (JAX-RPC) API can be implemented
by the JAXR providers. .

0 For the communication with the registry providers which export XML Messaging-based interface (for
example, ebXML), the Java API for XML Messaging (JAXM) can be used in the JAXR providers
implementations.

O Processing of XML content retrieved from or submitted to the registry is required by both JAXR providers
and JAXR clients, So the Java API for XML Processing (JAXP} and Java Architecture for XML Binding
{JAXB) can be used while implementing JAXR providers and JAXR clients.

Java API for XML Parsing

The Java API for XML Processing (JAXP) is used to parse, transform, validate, and query XML documents using
an API that is independent of a particular XML processor implementation. JAXP is a standard component in the
Java platform. The Java API for XML Processing (JAXP) is for processing XML data using applications written in
the Java programming language. JAXP leverages the parser standards Simple API for XML Parsing (SAX) and
Document Object Model (DOM) so that you can choose to parse your data as a stream of events or build an
object representation of it.

1309

Chapter 34

Till now we have learnt that Web services is a [atest technology that can be used to solve the problem of calling
methods on one machine from the other machine where both the machines are using different hardware and
software, Now, we will discuss how to create Web service based on JDK SE 6 platform and invoke this Web
service with a Web browser based AJAX client.

Creating a Web Service

Let’s create a sample Web service and understand how simple and easy it is to develop a Web service using APls
introduced with Java SE 6. The Web service stack provided with JDK 1.6 will be used to create this sample Web
service. The JAX-WS tools, like wsimport and wsgen, are part of JDK now. The deployment of Endpoint API is
now simplified with the HTTP server, which is included in JDK. For all data binding, the JAXB 2.0 is used which
is also a part of Web service API stack. The message processing is done using $tAX (Streaming API for XML) and
SAA] (SOAFP with Attachments APIs for Java 1.3). The StAX is a Java AP! containing interfaces that can be
implemented by more than one parser.

Creating Web Service EndPoint
A sample application includes a Web service interface and a Web service class which implements a Web service
interface. Alternately, we can have a Web service class directly which can be declared using the annotation
@WebService. A publisher is created to publish the service on the server and finally, a Web service client is
created which can access the Web service and invoke some service operations provided by the Web service.

We have combined the logic of creating a Web service and publishing it on the server in a single class. We start
with POJO which is decorated with @WebService. The use of annotation declares that it is going to be a Web
Service endpoint.

All the methods which we want to expose as Web service operations are annotated with the @WebMethod
annotation. Listing 34.13 demonstrates simple Web service endpoint, The code given in Listing 34.13shows code
for creating MyService. java file (you can find this file in the Code/ AJAX/Chapter 34/ web/service folder on
the CD):

Llstmg 34.13: The MyService j]ava Flle

package-service;
TRPOrE - jAvax:jwsi*; sl
import javax.xml. ws Endpo1nt'

@webService
public class MyServ1ce
{ ‘ .
@webuethod
public.int. sum(1nt a, int h)
{ .
i return-a+b;
1
- gmebMethod. - :
o public 5tr1ng message()
{
Coooreturn "Helle From web Servicel';
pubTic static void main(String{]- arys)
1 P S o el

//creating and Publishing web service.

" MyService serv = new MyService(); T

: Endpoint endpo1nt = Enﬁpo1nt publwsh("http //3aca1host sosljmysarv1ce", serv).
R !

The class is annotated w:th @WebSer\uce annotatlon The main () method of tl'us class is 1mplement1ng the

logic of creating and publishing of Web service on the HTTP server and port number 8081. Save this file in a

folder, c:\ web\ service.

1310

Consuming Weh Services in AJAX

To build and publish this Endpoint, run the following two commands:

The apt (Annotation Processing Tool) command is a command line utility used for annotation processing. The
things which we escaped from implementing using annotation are implemented by this tool and the related
components are generated, Run apt command and generate the required wrapper classes like this:

C:\web=apt -d sample service/MyService.java: S
Execute the following command to publish this Web service:

C:\web>java -cp sample service.MyService
Make sure that the c:\web\sample folder is created before these commands are executed Now we have our
Web service endpoint created and deployed. We can access the deployed WSDL by typing the following URL in
the Web browser:

http://Tocathost: 8081/ myservice?wsdl
The code given in Listing 34.14 shows you the WSDL of the deployed Web service endpoint:

Listing 34.14: The WSDL File
<?xmt version="1.0" encoding="uTF-8§" 7>
- <def1n1t1ons wmins=http://schemas. xmlsoap.o p/wsdT/ xmins: tns="htta.//serv1ce/"
 xmins:xsd="http://wew.w3.org/2001/XMLSchema’ L
xmins :soap="htip: //schemas xmlsoap.org/wsd1/soap/" targetﬂamespace:“http.//servicej
name="MyServiceservice™s e BT T
- <types>
- <xsd:schema> : :
<Xsd:import schemaLecatlonshttp /[1qca1host Eosllmyserv1ce?xsd-1
namespace="http;: //serv1ce/ LY
</xsd:schema> :
_ </type5> _
< «tessage names®sum" T s e
<part etement="tns: sum namez"parameters /> B
. </message>) _ v
- <message name— sumResponse?> Q

</message> .7L'
- <portrype name="MyService
-~ <operation name="sum’>
<input messages"tnsisum" /% S
<output message="tns sumkesponse" /> o
</operation>)
- <operation.name=" message >._.
<input message="tns:message” P L
<output message—"tns messagenesponse" />
</operation>
</portrype> o T : T 1 T)
- <binding name="Myserv1cePortB1nd1ng" type—"tns MyServ1ce >,
<soap:binding style="document"
transport="http: //schemas xmlsoap org/soap/http" /=
- <operation -name="sum">
<soaproperation soapAct1on="" />
- <input> :
<50ap:body use=“11tera1“ /> :
</input> :
- goutput> - ' :
<soap: body uses“ITterai" /> :

1311

Chapter 34

</output>
</operation>
- <operation name="message”s
" <spap:operation soapAction="" /> - -
- <inputs - : Sl
<s0ap:body use="literal" />
</input>
= <output>
<soap:body use="1iteral™ />
</ OUutpUt> :
</operation>
</binding> .
- <service name="MyserviceService"s - LR T ELIe
- <port name="MyServicePort” binding="tns:MyServicerortBinding">
<soap:raddress location="http://1ocalhost: 3081/ myservice” />
</services e
_ </fdefintrionss . IARCEN R TR :
No deployment descriptor is required and no starting of some container is requ
which uses HTTP server available in JDK 1.6.

Home Page for Application
The index.html is the home page for the application. It has a simple HTML form, which consists of three text
fields having names a, b, and result. When the onc1i.ck event triggers, it invokes the cal12Add method which
extracts values from the first two text boxes, converts them to integers, and then stores into two variables. Now
the URL to request the Web service client is made using these variables as query parameters. The code given in
Listing 3415 shows the home page for this application (you can find the indexhtml file in the

Code/AJAX/Chapter 34/MyServiceClient folder on the CD):
Listing 34.15: The index html File
Coahtmls o
caheady oot T T
_<titlesajax webservices Example</titles . .
<scripg Tanguage="Javascript™. :

. function postRequest{strurL) {
Af(window. xMLHttpRequest) { // For mozilla, safari; ...’
var xmlHttp = new XMLHttpRequest(); ' Sk
3} ' o - ' .

else if(window.Activexobject){ // For Internat gxplorer .
var xmiHttp = new Activexobject("Microsoft.XMLHTTF"}; i
¥ 7 -
CxmIHELp, opent (' POST', STFURL, true); e E _
¥mIHtEtp. setRequestHeader (' Content-Type', "application/x-www-form-urlencoded');
xml{ttp. ohreadystatechange = funection({ R T e .
if (xmlHttp.readyState == 4){ - - .

updatepage(xmTHttp. responseText); } °

xmlHttp. send(StrURL) ; °

o
funcrion updatepage(str) { : T -
document.gettlementBy1d(resuit’').value = str:

function calladd() { - : PR
- var a = parseInt(document.fl.a.value); :

o 'var b = parseInt(document.fl.b.vatue); . -~ . - -
var-url =" "add.jspPa=" & a.+ "&b=" 4 b+ vy 1

‘postRequest{url):

1312

Consuming Web Services in AJAX

|
=fscript>’
</head>’
<body>
<hl a'l1gn=“center“><fant ca!or‘:"#ﬂOOOSD“>A]ax webServmes Exan':p1e<lfcnt></h1>
<form name="f1"»>
<input name="a" id<"a" va1 e="
<input name="h" id="b" val ue—‘"‘
<input name=" result™’ type="text" 1d—"resu1 o :
<input type="button" Va]ue “ADD™ onc'hck—'.'ca] 'lAdd()” name= showadd"
</form> . : : :
</body> : *
</html> .
Now the postRequest method is called with this URL as argument. This rnethod creates an instance of
XMLHttpRequest object and then the Request is made to the Web service client using this object’s open and
send methods. When the server response is completed, the updatepage method populates the third text field
with the sum of the two entered numbers

Invoking a Web Service
Now, we will develop a client to access this Web service and invoke the exposed Web service operations. The
wsgen and wsimpert are Java Web Services tools available with JDK and are used to generate]AX-WS portable
artifacts.

Run wsimport on the deployed WSDL URL to generate some classes. Then use the ~keep switch to keep the
Java source files for all .class files generated and execute the following command {make sure your Web
service is deployed):

C:\web>wsimpart. ~p .client ~keep http://localhost:8081/myservice?wsdi
See all generated classes and Java source files in the ¢:\web\client folder. The most important class files are as
follows:

Q MyService.java—Service Endpoint Interface
0 MyServiceService—Generated Service. It is instantiated to get the proxy

Invoking Endpoint
Now create a client program to invoke the endpoint and execute methods. The add. jsp is a Web service client
program. It has embedded Java code to invoke the sum method of Web service. The cliert code creates an
instance of the generated service MyServiceService and uses this object to get the proxy myserviceProxy.
This proxy object is used to invoke the exposed Web service operations. The code given in Listing 34.16 shows
the code for add. jsp page (you can find the add jsp file in the Code/ AJAX/ Chapter 34/ MyServiceClient folder
on the CD):

Listing 34.16: The add. jsp Page

<%@page content‘rype.."tex_'_l:/hm‘l b S
<%@page pageencod'l ng="u1'l=- "X

try { : e S LR
c11ent.msgw1 ceSer\m:e ser\nce = new chent MySerwceserv'tce(). I ST T
cTient.MyService port = service. getMyServicePort(); RS
-4 a = Integer: parsemt(request getParameter{"at)y
“int b = -Integer. parsemt(request,get?arameter(”h' .)_. .
Ant resultis port.sumfa,- bl . T -
-out.printin(resyit)

catch. (Exception ex

1313

Chapter 34

Copy the client folder into /WEB-INF/classes directory. Next make a new Web Project and name it
MyServiceClient and deploy the MyServiceClient folder on Tomcat 6.0 server. Open Internet Explorer and
type

http:/ /localhost:8080/ MyServiceClient/ on the address bar and enter two numbers23 and 12in the first two text
boxes, respectively. Then click the ADD button to populate the sum in the third text field. The result is shown in
Figure 34.5.

- [nttpsocathose080/MySemviceClienty = | 49| X [{ Googte FRe

B Vow Foine TousHep . L

2 +Page + ﬁ Tooks v "

, S - O,

3 2 35 {ADD |
Done Up Q@ntemet|Protected Mode: @0 ®100% v

Figure 34.5: Addition of two Numbers using Web services and AJAX
In Figure 34.5, you can see the addition of two numbers.

Cross Domain Web Services

The current style of developing Web applications is the creation of Mashups. This means mixing the content
from two different sources. An example of Mashups is a website that combines the content or scripts from many
sources. The Mashups applications try to use many Ajax techniques. With the help of them, it becomes sensible
to invoke Web service from within your own JavaScript. However, XMLHttpRequest object has one limitation—
it is not used to invoke Web services outside its domain. The XMLHttpRequest object doesn’t allow calls to be
made from code in one domain to a Web service in another. However, these days Mashups are created using
APls, which are made publicly available by companies, such as Google, Flickr, Yahoo, Last.fm, and YouTube. It
involves calling Web Services from these APls.

If you are using Internet Explorer (IE), then the temporary solution for calling cross domain Web services is by
configuring the IE as follows:

[Add a trusted site by selecting Tools | Internet Options | Security tab.

O Set the security for the trusted site by selecting Custom level | Miscellaneous section.

O Set the “Access data sources across domains” option to Enable. By default, it will be set to Prompt.
FireFox doesn’t support such type of configuration. Therefore, this solution is not a universal solution.

Another solution for calling cross-domain Web services is getting JavaScript to call a proxy program (either on
the client or the server). This proxy program calis the Web service for you, The output can be written to the
response stream in the form of text or XML and then it is available using the responseText and responsexXML
properties of XMLHttpRequest. If your Web service returns JSON (JavaScript Object Notation format), then
you can dynamically create a script tag and assign the src attribute to the location of the Web service. This
will work only with JSON data. JSON cannot represent functions or expressions; it can only represent data. It can
be easily converted into a JavaScript value, and so is easy to reference via a script. One of the examples of Web
services which return JSON data is Yahoo Web services. This solution heavily depends on JSON and so cannot

1314

Consuming Web Services in AJAX

be used with Web services that don’t have a JSON option. Another problem is that the dynamic script doesn’t
inform whether it is loaded correctly. A further problem is that, in IE, the dynamic loading of scripts stops all
other processing that causes a potential memory leak

The preceding discussion shows that there is no one perfect way to call Web services cross domain using Ajax.
However, many applications, which invoke cross domain Web services, have been developed. Some of them rely
on an ASP.NET server-side proxy as a solution or some prefer the solution that involves JSON.

In the next section, we will discuss how to use Java Web services APIs for developing Web services.

Using APIs

Java Web services Development pack is a software development kit used for developing Web services and other
Java applications. In this topic, we are providing a brief coverage on packages that come with Web services
developer pack.

Javax.xml
It specifies XML constants. These attributes include the prefix to represent default XML namespace, official XML
namespace prefix, and specify XML namespace declarations. There are many core XML standards, like
extensible markup language v1.1 and v1.0, namespaces, etc. in XML

Javax.xml.bind
It makes client applications capable of unmarshalling, marshalling, and validation with its runtime binding
framework. The javax.xml.bind annotations are used to convert Java objects into XML. Table 34.7 lists the
interfaces in the javax.xml.bind package:

! Table 34.7: Interfaces of the ja

vax.xmlbind Package

Element It is the element marker interface

Marshaller It controls the process of serializing Java content in the form of trees into XML data

ParseConversicnEvent It specifies the error that occurs during conversion of XML data into corresponding
Java type

validationEvent It specifies the error that occurs during validation in operations, like marshalling,
unmarshalling, etc

validator It is responsible for controlling the validation of content trees during runtime

There is one JAXBContext class, which makes client access to JAXB APIL

Javax.xmi.datatype
It provides mapping between XML schema and Java data types. XML schema should have mappings for
primitive data types, such as byte, date, integer, long, double etc. JAXB defined mappings for XML schema built-
in data types includes:

xs:anySimpleType

xs:boolean

xs:byte

xs:decimal

xs:double

xs:float

xs:hexBinary

xs:int

Xxs:integer

xs:long

poocoopocoooD

1315

Chapter 34

0 xs:QName
xs5:short
Xs:string

Xs:unsignedByte

OooDoD

Xxs:unsignedInt
U xs:unsignedShort

Javax.xml.registry
It contains classes and interfaces of JAXR APL It is formed on ebXML registry information model and also
supports registry specifications, such as UDDI. Table 34.8 lists the interfaces of the javax.xmlregistry package:

Tahle 34.8: Interfaces of the javax.xmi.registry Package

momand
ablityProflle . It gives details about the capabilities of JAXR provider
Connection It represents the connection between JAXR client and JAXR provider
DeclarativeQueryManager It gives the capability to execute declarative queries ;
FederatedConnection It denotes a virtual connection to a group of registry providers w«;
JAXRResponse tt denotes JAXR requests and response
Query It encapsulates a single query in a declarative query language 7l
RegistryService i Itis the main interface implemented by a JAXR provider

ConnectionFactory is the base class for creating a JAXR connection,

Javax.xmi.rpc
RPC means remote procedure calls. This package is used for making function calls and receiving the responses
over the network. It contains API classes for programming client. JAX-RPC uses SOAP and HTTP to make
remote procedure calls on a network. Table 34.9 lists the interfaces of the javax.xml.rpc package:

Table 34.9: Interfaces of the javax.xml.rpc Package
P
e Gy &
Call It does dynamic invocation of a service endpoint
Service It represents dynamic proxy for target service endpoint
Stub It is the base interface for stub classes

Javax.xml.soap

This package lets you perform functions, such as create point-to-point connection to particular endpoint, create
SOAP messages, add or modify content to header, attachment parts and send SOAP request response message.
SCOAPPart of SOAPMessage is a DOM-based document and can be accessed using tools and libraries that use
DOM. S5AA] APIs are needed to return SAA] types during examining and accessing DOM tree. SAA]J comes with
a package javax.xml.soap, which contains the APIs to handle the SOAP message. SAA] helps in writing a
SOAP messaging application directly, instead of using JAX-RPC. Table 34.10 lists the interfaces of the
javax.xml.soap package:

1316

Consuming Web Services in AJAX

Table 34.10: interfaces of the javax.xml.soap Package

Name It represents an XL nae .

Node It represents an element in an XML document

SOAPBody It represents contents of SOAP body element in a SOAP message
SOAPEnvelope It represents an envelope containing SOAPHeader and SCAPBody
SCAPHeader It represents SOAP header element.

SOAPFault It represents element of SOAPBody object, which describes error inforrnation

Table 34.11 lists the various classes of the javax.xml.soap package:

Table 34.11: Classes of the Javax.xml.soap Package

e 2

AttachmentPart An object that denotes a single attachment of a SOAPMe s sage object
MimeHeader An object that stores MIME header name and its value
SOAPConnection A Connection object that is used by client to send messages to remote destination
S0APMessage 1t is the root class for all 5SOAP messages
SOAPPart An object that stores SOAP related part of SOAEMessage object

Javax.xmi. transform .

It has generic classes for processing transformation instructions and performing transformation from source to
result. To pass Source and Result interface objects to interfaces, StreamScurce and Stream Result classes
are used. Table 34.12 lists the interfaces of the javax.xml.transform package:

Result An object that implements this interface contains the information needed to build a
transformation result tree

Source An object that implements this interface contains the information needed to act as
source input (XML source or transformation instructions)

Namespaces pose problems when we use XML objects, Qualified names in XML document are prefix names. But
these names do not serve as identities of namespaces. It is URI to which prefixes are mapped hold identity. One
alternative is creating QName object, which consists of all namespace URIL prefix, and local name. To pass
namespace values to transformations, use two part string which is made up of namespace URI in curly brackets
suffixed by local name. An application can check whether it is null or non-null URI by seeing the first character
of this string, For example, for the element defined with <abc: hav xmlns="http://abc.hav.com/
padb/ser.html”>, the qualified name looks like *{ http://abc.hav.com/padb/ser.html} hav”. Here the
prefix is eliminated.

The javax.xml.transform.dom, 3javax.xml.transform.sax, and javax. transform.stream
packages implement DOM, SAX2 and stream specific transformation APls, respectively.

Jjavax.xmi.validation

Validation is a process of verifying that an XML document is an instance of a specified XML schema. The
javax.xml.validation has API classes for validation of XML documents. Table 34.13 lists the classes of the
javax.xml.validation package:

1317

Chapter 34

|

Table 34.13: Classes of the javax.xml.validation Package

SchemaFactory It is a factory that generates Schema instances
Schema It is built in representation of grammar used by a XML schemna
Validator It verifies XML document against particular XML schema

The javax.xml.parsers and javax.xml.transform.dom packages are used in conjunction with
validation APIL. The javax.xml.parsers package is used to parse the XML documents and then the
javax.xml.transform.dom package transforms the parsed XML documents in the form of DOM tree. In the
validation process, the first SchemaFactory which understands specific types of schema, like WXS schema, is
created. Using this factory, the Schema instance is created. Now the newValidator () method of Schema object is
invoked and returns an instance of the Validator class. Finally the validate method of Validator class is invoked,
which takes an instance of Document object to perform validation. If this method is unable to perform
validation, SAXException is thrown.

Summary

You have learned Web Services and its relation with AJAX in detail, in this chapter. The chapter started with
Web service and then moved towards SOAP, its message elements in detail, syntax of WSDL document and
registry standard UDDI. With emphasis on the latest Web services REST architecture in terms of its components
and views, we also understood the various design issues that occurs during the design of Web service and the
various technologies, like JAXB, JAXR, JAXP, etc. Towards the end of the chapter, we created, implemented, and
invoked a Web service using AJAX client.

Quick Revise

Q1. Define Web services.

Ans: Web services present a model by which tasks of e-business processes were distributed widely through
Internet. This model is not restricted to a specific business model. Web services are not graphical user
interfaces, but can be used into software meant for user interaction. They describe their inputs and
outputs in a manner that the second party can predict its functionality, how to call it, and the expected
results. The Web services are reusable software components and let the developers reuse basic elements
of code made by others. There is a loose connection between these software components, which allow
manageable reconfiguration.

Q2. Define SOP.

Ans: Simple Object Access Protocol (SOAP) is a protocol which allows applications to exchange information.
Unlike the language or platform specific protocols, such as Internet Inter-ORB Protocol (IIOP) or Java
Remote Method Protocol (JRMP), the SOAP is not a language or platform specific protocol. It allows
communication between applications running on different platforms. SOAP, unlike the IIOP and JRMP
which are binary protocols, is a text-based protocol and uses XML-based rule to allow applications
interchange information over HTTP.

Q3. What is Header element. What are the attributes of the Header elements?

Ans: The Header element contains application-related information about SOAP message. It is an optional
element and should be the first sub-element of envelope element, if included. The Header element can
have attributes, which specify how the recipient processes the message. Header elements act as contracts
between the sender and the receiver. The attributes of Header element are as follows:

Q actor attribute
a2 mustUnderstand attribute

0 encodingStyle attribute

1318

Consurmning Web Services in AJAX

Q4.

Ans:

Q5.

Ans:

Q6.

Ans:

Q7.

Ans;

Q8.

Ans:

Q.

Define UDDI.

UDDI stands for Universal Description Discovery and Integration. It is a directory for storing
information about Web services and communicates using SOAP. It uses WSDL to describe interfaces to
Web services, e.g. if any industry wants their services to be used by others, it registers its service in UDDI
directory. Users then search for the UDDI directory to find the service. When an interface is found, users
can communicate with the service.

Define JAX-RPC.

Java API for XML-based RPC (JAX-RPC) is a Java APl used for developing and using Web services. A
collection of procedures that can be called by a remote client over the Internet is an RPC-based Web
service. A client written in a language other than Java programming language can access a Web service
developed and deployed on the Java platform with JAX-RPC.

Define JAXM. .

The Java API for XML Messaging (JAXM) provides a standard way to send XML documents over the
Internet from the Java platform, It is based on SOAP 1.1, which defines a basic framework for exchanging
XML messages. By adding the protocol’s functionality on top of SOAP, JAXM can be extended to work
with higher level messaging protocols, such as the one defined in the ebXML (electronic business XML)
Message Service Specification.

List the built-in data types of defined by JAXB for XML schema.
JAXB defined mappings for XML schema built-in data types include:
0 xs:anySimpleType

xs:boolean

xs:byte

xs:decimal

xs:double

xs:float

xs:hexBinary

xs:int

xs:integer

xs:long

xs:QName

xs:short

xs:string

xs:unsignedByte

xs:unsignedInt

ODoOoocoDuLUOdO0OO0O0OD0DOO0O0GCO

xs:unsignedShort

Define the javax.xml.soap package.

This package lets you perform functions, such as create point-to-point connection to particular endpoint,
create SOAP messages, add or modify content to header, attachment parts and send SOAP request
response message. SOAPPart of SOAPMessage is a DOM-based document and can be accessed using
tools and libraries that use DOM. SAA] APls are needed to return SAA] types during examining and
accessing DOM tree. SAAJ comes with a package javax.xml.soag, which contains the APIs to handle
the SOAP message. -

List the interfaces of the javax.xml.transform package.

The interfaces available in the javax.xml.transform package are:

O Result—An object that implements this interface contains the information needed to build a
transformation result tree.

1319

Chapter 34

O Source— An object that implements this interface contains the information needed to act as source
input (XML source or transformation instructions).

Q10. List the classes of javax.xml.validation package.

Ans: The classes available in javax.xml.validation package are:
O SchemaFactory —It is a factory that generates Schema instances,
O Schema--It is built in representation of grammar used by a XML schema.
Q Validator—It verifies XML document against particular XML schema

1320

Installing Java
Software Development Kit

Java is a programming language, which inherits its object oriented features from C++. Java language was created
by a software developer, James Gosling, at Sun Microsystems in 1991. It was first called Oak, which got changed
to Java in 1995, when it was first released for public use. The original idea for Java was to create a platform
independent and object oriented language that could run on any operating system. Java has a slogan that is
‘write once, compile once, and run anywhere’. This slogan means once a program is compiled and run
successfully on a platform then that program can easily be executed on any other operating system.

This appendix discusses how to download and install the Java Software Development Kit. Then, we discuss how
to create, compile, and run a simple Java program.

Now, let's start with discussing the following features of Java that make it more robust than other languages:

O Portability - In the distributed world of Internet, an application developed with the help of 2 programming
language might be accessed on various computers having different kinds of operating systems. But, it’s not
guaranteed that the application is portable, that is the application runs successfully on all operating
systems. To overcome this portability issue, Java introduces a concept of what is known as Bytecode.

Bytecode is a set of instructions that is generated by Java compiler on compiling a Java program. In other
modern programming languages, a program is compiled into an executable code but in Java, a program
gets compiled into an intermediate code called Bytecode. This Bytecode then gets executed by Java runtime
system called the Java Virtual Machine (JVM). Now, only the JVM needs to be implemented on the system
where the Java program has to be executed. JVM is also considered as the Interpreter of Bytecode. In this
way, Java has solved the problem of portability.

O Multithreading —Java is a programming language designed for the distributed environment of the Internet
and for that the concept of multithreading is implemented. This feature helps to write interactive programs
wherein multiple tasks can be performed simultaneously; thereby making it a robust programming
language.

O Memory Management—In Java, all memory management processes are handled automatically. Whenever
a program is created, you allocate some memory to the objects used in the program and deallocate (frees)
that allocated memory. In Java, you do not need to worry about freeing the memory because Java provides
automatic garbage collection that is when the objects are not in use the memory allocated to them will be
freed by Java. For example, you have created an array that can store 100 elements, which means you have
reserved space for 100 elements. So, when the array completes its functioning and no longer in use then Java
frees up the memory allocated to the array. Now, this space can be used by other Java objects. In other
programming languages such as C++, you also have to write the code to deallocate the memory, which
seems a very tedious process as a programmer needs to remember that memory for which object needs to

Appendix A

be deallocated. Sometimes programmers deallocate the memory of the objects that are currently in use and
this can harm the process. That's why memory management is a tedious in languages such as a C++ but not
in Java because here the memory management is automatic.

Security—Java is a secure language as the programs created in Java are confined to the Java runtime
environment that is they can only access that part of your computer hard disk, which is required to execute
the program. Java programs are not allowed to access the data outside of Java runtime environment so,
downloading Java application through internet won’t harm your computer than the applications made in
other programming languages can does. That’s why Java is a secure language.

Distributed --Java is a distributed language as it can be used to create applications to communicate over the
network. Java can communicate over the network because it supports TCP/IP (Transmission Control
Protocol /Internet Protocol). The TCP/IP protocol is a set of network communication protocol.

The latest release of Java Standard Edition platform is called Java SE 6, Let's now take a look on how to
download and install this software package of Java 6. To download Java SDK Standard Edition 1.6, visit Sun
Microsystems’s website at http://java.sun.com/javase/downloads/index.jsp. After downloading
the SDK, perform the following steps to install Java SE 6.

1.

1322

Run the downloaded SDK executable file. The Welcome window appears, as shown in Figure A.1:
M ettty w Develgpnient K 6 B E

| B ;
i Welcome ta the Installation Wizard for
lava(TM) SE Development Kit 6

gl

Java(TM) SE Dewelopmant Kit 6 Setup is prapanng the
Installsbon Wirard which will quide you through the: program
setup process. Plaase wad.

Figure A.1: Displaying the Welcome Window

The welcome window disappears in few moments and a dialog box showing the license agreement appears

(Figure A.2).

2

Click the Accept button on the License Agreement page to continue the installation process, as shown in
Figure A.2:

i Javal T™) SL Develupnment Xit & - Ligeusi

License Agreement:
Plese read the follovang kcarse sgreatnert carsfully

APre-Release Softvare Evaluacion Agreement

SUN MICROSYSTEAS, INC. ("SUN™) I3 RILLING TO LICENSK
JTHE JAVA SE DEVELOPMENT KIT (JDK), VERIION 6

5 |PRE-RELEASE SOFTUARE TO LICENSEE ONLY UPON THE
JCONDITION THAT LICENSZIE ACCEPTS ALL OF THE TERAS
JCONTAINED IN THIS LICENSE AGREZMENT ("AGREENENT").
:4PLEASE READ THE TERES AND CONDITICNS OF TEIS AGREEMENT .
+4CAREFULLY. BY DOWNLOADING OR- INSTALLING THIS SOFTWARE, 24
“ALICENSZE ACCEPTS THE TERMS AND CONDITIONS OF THIS "
LICENSE AGREENENT. INDICATE ACCEPTANCE BY SELECTING
ZJTHE "ACCEPT™ BUTTON AT THE BOTTOM OF THIS AGREENENT.
{IF LICENSEE I$ NOT WILLING TO BE BCUND BY ALL THE
“ATERNS ECT THE "DECLINE® BY

Figure A.2: Displaying the License Agreemant Page

Installing Java Software Development Kit

The Custom Setup dialog box appears (Figure A.3).
Choose a list of components {Figure A.3) that may be installed. Continuing with the Development Tools

3.

component, which is selected by default, is sufficient to get started with Java programming,.

Click the Browse button to change the installation location. In our case, we accept the default installation

location.

Click the Next button, as shown in Figure A.3:

e'_iT' Javal{ ™M) St Developrent Kit & - Custom Setup

Custom Setup
Sedect the program features you want instaled.

il o the St bekoe. Yeu car chaige your chok of Feabires after
vy Progrns ety e ControPonsd -

L E—-mwg.;;__._j__-i_‘

Figure A.3: Displaying the Custom Setup Page

The Installing window appears, as shown in Figure Ad:

o lava(1M) L Development XIL6 - Pragress

Instaling
The program Featuras you selected are being installed.

RS

Figure A.4; Displaying the Installing Window

When the progress completes Installing window disappears, Custom Setup dialog box for Java runtime
environment appears (Figure A.5).
Click the Next button to continue the installation process, as shown in Figure A.5:

6.

1323

Appendix A

awa(1M) SE Runtimie Enviremment b - Custony Setug
Customn Setup
Select the program Features you want instafled.

X MMWSE Rinlime Environimant with
:upﬁm\dfmrashow&mthi&

~| Defauik 3ava For Browsers
~{ Additional Fort and Media Support

Figure A.5: Displaying the Custom Setup Dialog Box
The Java runtime environment progress window appears as shown in Flgure A6

h:vn”"ﬂ Hf Runlmm Enwmrmwnt E. ngresi .
Installing
The program features you selected are being instalied.

Figure A.6: Displaying the Java Runtime Envirenment Progress

When the progress completes Installing window disappears and the Wizard Completed dialog box appears
mnforming you that the installation is completed.

7. Click the Finish button on the Wizard Comp|

leted dialog box to exit from the installation wizard, as shown
in Figure A.7:

1324

Installing Java Software Development Kit

Java(M) SE Developrvent Xil b Complele

Wizard Completed

The Instal Wizarad has successfully installed Java(TM) SE
Development Kk 6, Click Finish ka exit the wizard,

7 Show the readme fle

Figure A.7: Displaying the Wizard Completed Page

This is how to install the Java on your system. Now, you can take the advantage of the tools used for compiling
and running a Java program {javac and java). The tools used for compiling and running are located in the ‘bin’
folder of the Java installation directory and these tools are normally operated from a Command Prompt. These
tools can however be made available from anywhere on the computer by adding their location to the system
path, as shown in the following steps:

1. Select Start-»Control Panel»System. The System Properties dialog box appears, as shown in Figure A.8.

2. Click the Advanced tab, as shown in the Figure A 8. The System Properties dialog box appears displaying
some advance options including the Environment Variables, as shown in Figure A 8:

Figure A.8: Displaying the System Properties Dialog Box
3. CQlick the Environment Variables button, as shown in Figure A.8. The Environment Variables dialog box
appears, as shown in Figure A.9.
4. Select the Path Variable given in the System variables, as shown in Figure A.9:

1325

Appendix A

Environment Yariables

7 Wser variables for Dempak

fvanee Tvaw oo |
i | TEMP CriDocuments and Settings\Deepakii :
R C:\Documents and Sethrns\DeepakiLoc, .. 1

;'anﬁeﬂaﬁ R et R
 [vanabie

PATHEXT
PROCESSOR A, .,

PROCESSOR IO .
PROCESSOR_LE...

Figure A.9: Displaying the Environment Variables Dialog Box

5. Click the Edit button to add the path of the Java bin directory to the end of the list in the Variable value field
as shown in Figure A.10;

Edit System Vartable

- veritlo name: . [ath

 Yarioble vakie:

] Folder;C:\Program FiIes\,Java_';idki.é.D\hin; .

Figure A.10: Displaying the Edit System Variable Dialog Box
6. Click the OK button to close the Edit System Variable dialog box as shown in Figure A10. And finally click
on OK button in Environment Variables dialog box.

7. Type java -version at the Command Prompt window to test that the Java tools can be accessed globally, as
shown in Figure A 11:

Command Prompt

N

Figure A.11: Displaying the Execution of the Java Command

The output shows that Java has responded correctly to the java-version command, thereby making the Java tools
globally accessible. Now, we can continue working with Java. Let’s write a Java program.

1326

installing Java Scoftware Development Kit

A Simple Java Program

Let’s now create a simple Java program using text editor called Notepad. First of all, put some Java code into the
editor such as Notepad to create our first Java program, as shown in the following code snippet:
public class. Helloworld- LT el e s =
{ o
public. static

}

} . ;

In the above code snippet, the class keyword is used to declare a class called HelloWorld. This name HelioWorld

is used as an identifier, which is used to give an appropriate name to a class. Let’s take a look at the following
line:

o Sysfzém .out.printin("Hello world This is our first java program”); .

public statric void main {String args(])
This is the line at which the program begins executing. It is by cailing this main () method that all Java
programs begin their execution. The line begins with public keyword which is an access specifier, making the
main () method accessible outside the class in which it is declared.

Static keyword allows main () to exist before creating object of the class in which the main method is declared.
void keyword specify that the main () does not return any value.

Now, save the file as He1lcliorld. java to a desired location on your system. Java programs are saved with the
file extension * java’.

It is to be noted that in Java, name of the file should match with name of the class. Java is a case-sensitive
language, that is the word ‘hello’ and ‘Hello’ have two different meanings in Java. Ongce a Java program is
written, its time to compile and then run it to show the desired cutput.

Compiling and Running the Program
To run a Java program, it is necessary to compile it first using Java compiler. This Java compiler is an application
named javac.exe located in the Java directory bin folder.

To compile a program, type javac followed by a space and then the name of the file to be compiled, as shown in
Figure A12:

<« Command Prompt

Figure A.12: Displaying the Execution of a Java Program
The errors may occur during compilation due to the following reasons:
Q0 Incorrect syntax
U Inability of compiler to find the source file
O Incorrect file name '
Once the source file gets compiled, a new file with the same name as that of the source file followed by an
extension .class’ gets created. Now, its time to run this .class file. To do so, SDK provides tool called java.exe,
which is an application used to run Java programs. To run the program, type java followed by name of the .class
file and press enter to show the output, as shown in Figure A.13:

1327

Appendix A

Command Prompt

Figure A.13: Displaying the Output of the Java Program
The next appendix describes about the Struts framework.

1328

Struts 2-Advancement
in Web Technology

In the world of Internet, we require various web-based services for all types of business needs. The software
industry is sharply looking at new emerging technologies, design patterns and frameworks, which can bring
about an evolution in the development of enterprise-level Web applications. We now have numerous
technologies (like Servlet, JSP), different design patterns (like MVC) and various new frameworks to develop a
Web application. The name of this new application Framework introduced in this appendix is Struts 2. As you
must be aware that a framework is always designed to support the development of an application with its set of
APls, which implement a specific architecture and some reusable components to handle common activities
associated with the application. Struts 2 is one such application framework that is about to revolutionize the Web
application development. '

Struts 2 is not just a revision of Struts 1, it is more than that. Though the working environment, various
component designing, configuration, and few other things seem familiar to the Struts 1 developer, the Struts 2
has some architectural differences when compared with Struts 1. In general, Struts 2 Framework implements
MVC 2 architecture with centralizing the control using a Front Controller strategy similar to Siruts 1, but the
basic code of components and their configuration is quite different.

In addition to introducing Struts 2 as a new Web application Framework, we'll get into a detailed discussion of
this framework which contains every thing that can make it a preferred choice over other frameworks, like Struts
1. Though Struts 2 is not to replace Struts 1, we now have one more option to choose from while deciding which
framework to use for a new Web application development and Struts 2 has all the potential to replace other Web
application Frameworks in the industry.

The key features of Struts 2 starting from Interceptors, Results, integration with other popular frameworks and
languages through plugins, XWork Validation Framework support, integration with OGNL, and
implementation of Inversion of Control (IoC) make this framework stand apart from the other frameworks. We
have discussed all these features through this appendix.

Struts 2 is a Web application Framework and will be used for the development of a Web application. This
appendix provides a brief discussion over the topics, such as Web application and the technology context which
can help you understand architectural decisions taken for the frameworks, like Struts 2. Let’s begin our
discussion with the term Web application first. |

Web Application Framework |

All the Web applications have some common features. They execute on a common machine, accept input from
common input devices, output data to common output devices, and stores information in a common memory.

Appendix B

An application framework is based on these common aspects and provides a foundation for developing the
applications to the developers and alleviates from putting additional efforts for it.

A framework refers to a set of libraries or classes, which are used in the creation of an application. This involves
bundling sections of code, which perform a different task, into a framework. With this sort of arrangement, it
becomes very easy to design an application by following the framework and reusing those code-sections. The
framework that is used for the development of a Web application is known as Web application Framework, such
as Struts 1 and Struts 2.

Struts 2 is a Web application Framework which involves tools and libraries for the creation of Web applications.
Struts 2 Framework follows Model-View-Controller (MVC) architecture and implements a front controller
approach like Struts 1 Framework.

Model-View-Controller (MVC) is a pattern used for the creation of Web applications. It soives the problems of
decoupling the Business logic and data access code fromn the Presentation logic. The two different MVYC models are
MVC 1 and MVC 2. In MVC 1, all requests are handled by JSP, while in MVC 2 it is handled by a Controller serviet.
Struts 2 follows the MVC 2 architecture pattern.

Developing a Web application by using Web application Framework, like Struts 2, first requires a layout of the
application structure, followed by an incremental addition of framework objects to that structure. This is
accomnplished by creating the framework tools module. This involves generating framework components by
using the wizards and customizing them according to the requirernent.

A framework provides some common techniques (Figure B.1) to design an application, which makes the
application easier to design, write, and maintain. Figure B.1 shows the common framework strategy:

Figure B.1: A Common Framework Strategy
The most common technique that frameworks use includes the following strategies:

a Configuration files — Provide the implementation details containing settings specific to an application, such
as assembly binding policy, remote objects, etc. Configuration files are read at runtime. These files are
external to the application and are not included in the source code.

O Central Controller—Provides a way to manage the incoming requests. It receives the requests, processes
them, according to a pre-defined logic, and forwards the result to the Presentation systems.

O Presentation system— Allows different people to access different parts of the application at the same time.
Java developers can work on the Central Controller, while page designers can work on JSPs.

Having understood the concept of a framework, we can now brief that the Web application Framework eases the

process of entire Web application development cycle and allows designing complex Web applications in a way

that is easily understandable and manageable. The advantages of using a Web application Framework are
described as follows:

O Simplified design and development—Web application Frameworks greatly simplify the process of
development and designing of Web based projects. It provides a foundation, upon which the developers
can stand their structures to implement the application very easily. Since the responsibility of developing
various application components is given to different members of the team, depending upon their skills, the
development process proceeds smoothly.

@ Reduced production time—The entire Web application is broken down into small components that are
developed and tested individually. This sort of arrangement reduces the production time because testing of
smaller components requires less time to debug, as compared to testing the entire project at once.

1330

Struts 2-Advancement in Web Technology

O Reduced code and effort— The Web application components that have been tested and debugged, provide
a specific functionality can be set aside to be used further when a similar functionality is required in any
application. It offers a reduced amount of code and effort involved in the entire development cycle.

O Improved performance—Since each component is developed by a specialized person having specialized
knowledge and experience in developing similar applications, the best efforts can be provided to
application development. The performance of the code improves further by using a powerful set of APIs,
provided by the framework, which offers its own features.

O Easy customization and extension—In order to customize the application or to extend the capabilities of
the application, it is required to make changes in a particular portion of the application, rather than
developing an entire new application.

8 Code reuse—The Web application Framework provides a set of components that are known to work well in
other applications. These components can also be used with the next project and by the other members in
the organization, New components can also be developed that can be used as reusable code components.

These features of Web application Framework and the way they help in the development of a Web application

has made them popular among Web developers. We have a large number of Web application Frameworks

avatlable, which are being used in the industry for Web development, like Spring, JSF, Struts 1, WebWork, Struts

2 and many more. Each framework has its own architecture and the way the components are designed and

configured are also different. So, instead of having a discussion over the different Web application Frameworks,

we can now start our fourney with Struts 2.

However, Struts 2 is derived from the WebWork2 Framework which has been in use for the development of Java
Web applications. After working for several years, the WebWork2 and Struts communities joined together and
created Struts 2. Let’s first have a brief introduction of WebWork2 framework.

WebWork’2

WebWork2 is an Open Source Framework that is used for creating Java-based Web applications. It is fully based
on MVC 2 architecture and is built on a set of Interceptors, Results, and Dispatchers that is integrated on XWork
Framework. The View components of WebWork2 include JSP, Velocity, JasperReports, XSLT and
FreeMarker. The WebWrok2 Framework provides you the ability of creating your own set of templates by
using JSP tags and Velocity macros. It also provides features, such as redirect, request dispatcher results, and
multipart file uploading.

WebWork2 provides three features — dispatcher, library of tags to be used in view, and Web-specific results. A
dispatcher is responsible for handling client requests by using appropriate actions. By using this technique, the
most common way to invoke an action is either via a Servlet or a Filter. The Model is composed of POJO (Plain
Old Java Objects) classes. WebWork?2 also comes with some built-in JSP tags for creating HTML pages.

History of WebWork 2.0

WebWork 2.0, developed by OpenSymphony, was released in February 2004. WebWork 2.0 is the first release of
the complete rewrite of WebWork with implementation on top of XWork. WebWark 2.0 Framework is the result
of a combination of earlier versions of WebWork Framework and Xwork Framework. Hence, all the versions of
WebWork2 (2.1.x and 2.2.x) support the features of WebWork’s previous releases and XWork Framework.
XWork is a generic command pattern MVC Framework, which is used to power WebWork as well as other
applications. It provides a built-in rich framework, which contains Inversion of Control container, a powerful
expression language, validation, data type conversion, and pluggable configuration.

Flow of Execution in WebWork2 Architecture
WebWork?2 is based on the Model-View-Controller architecture, which means that the logic is separated from
view and the Web application can run on the server by the Controller component. The basic flow of execution in
WebWork architecture is shown in Figure B.2:

1331

Appendix B

(1) accass

) ol
B Dispatcher (8) myoke

(7) retum

(8) update

(9} Dispatch

Config
Fila

Figure B.2: Flow in WebWork’s Architecture
Figure B.2 shows the following the sequence of steps:

1.
2,
3.
4.
5.
6.
7.
8.

9.
10.

The work flow described through these steps can be compared with what you will study for the Struts 2 based
application as the basic concept of dispatcher, action and interceptors have been inherited to Struts 2 from

Browser access dispatcher through a request

Dispatcher uses configuration file to get the configuration details

Dispatcher reads action configurations to know the appropriate action to be invoked
Dispatcher creates an instance of Action class and executes its method

Action class creates instance of Model, If the Model is already created, step 6 is taken
After creating Mode! instances, the Action class updates Model for the changes, if any
Action returns the result code

The dispatcher reads result/view configuration to know appropriate view according to the result code
returned by the Action class

Dispatcher dispatches to the selected view
View further extracts data from the Model and displays it to the user in the appropriate manner

WebWork2.

Features of WebWork2

There are several features of WebWork2, and some of the important features are as follows:

Q Itiseasy to learn. You can start programming using MVC 2 design pattern very easily.

O The interfaces used in WebWork2 are simple.

0O WebWork2 provides configuring the Servlet container through web.xml, and configuring WebWork
through xwork. xml.

Q Interceptors are one of the most important features of WebWork2. Interceptors allow you to do some
processing before and/or after the action and results are executed.

Q Ttis easier to upload a file. WebWork provides an Interceptor, FileUploadInterceptor, which provides
the retrieval and cleanup of uploaded files. Using this Interceptor, your Action doesn’t need to worry about
request objects, request wrappers, or even cleaning up the Fil2 objects,

O WebWork2 creates dynamic web pages without using any Java code in your JSPs, by using simple
expression language called the Object Graph Navigation Language (OGNLY}.

O Velocity is used in place of JSP Scriptlets. However, it is not best practice to write Java code in JSP.
WebWork provides Velocity that has a simpler format, which can be used in HTML editors very easily.

O WebWork provides FreeMarker, a template engine which is used to generate text output based on

1332

templates. It generates output by using HTML temnplate file and Java objects. It also provides features, like
using any JSP tag library.

Struts 2-Advancement in Web Technology

. O WebWork provides an Expression Language (EL) that is a scripting language which allows simple and
concise access to JavaBeans, collections, and method calls. It is also used to eliminate the repetitive Java
code.

Struts 2

Struts 2 is a free Open Source Framework for creating Java Web applications. It is based on WebWork2
technology. The features of Struts 2 are user interface tag, type conversion, Interceptor, result and validation.
Struts 2 is a highly extensible and flexible framework for creating Java-based Web application, It has been
developed on the concepts of MVC 2 architecture. The Struts 2 project provides an open-source framework for
creating Web applications that easily separate the Presentation layer and Transaction and Data model on
different layers. Struts 2 Framework includes a library of mark-up tags, which is used to make dynamic data. To
ensure that the output is correct with the set of input data, the tags interact with the framework’s validation and
internationalization. The tag library can be used with JSP, Velocity, FreeMarker, and other tag libraries, like ISTL
and AJAX technology.

Before exploring the features of Struts 2 and understanding how it is different from its previous versions, let's
take a look at the history behind it.

Struts 1 was introduced as an idea of using JSPs and Servlets in Web applications to separate the Business logic
from the Presentation logic. As time passed, a need for new enhancements and changes was felt in the original
design. This forced developers to evolve a next generation framework that could keep up with these changes.
There were two candidates at that time that could meet the requirements of the next generation framework —
Shale and Struts Ti. Shale is a component-based framework, which has now become a top-level Apache project,
whereas Struts Ti continues to follow the Model-View-Controller architecture. Then in March 2002, the
WebWork Framework was released. WebWork includes new ideas, concepts and functionality with the original
Struts code. In December 2005, WebWorks and the Struts Ti joined hands to develop Struts 2. The request flow in
Struts 2 Web application Framework is shown in Figure B.3:

Roquest >

-V

Jl

A
N

Interceptors

Response]

N

Figure B.3: Request Processing in Struts 2

The processing of a request can be divided into the following steps:

O Request received—As a request is received by the framework, it matches it to a configuration so that the
required interceptors, Action class, and result class can be invoked.

O Pre-processing by Interceptors—Once the configuration is found, the request passes through a series of
interceptors. These interceptors provide a pre-processing for the request.

Q Invoke Action class method — After the pre-processing by the interceptors, a new instance of the Action
class is created and the method providing the logic for handling the request is invoked. It is to be noted that
in Struts 2, the method to be invoked by the Action class can be sperified in the configuration file.

O Invoke Result class —Once the action is performed and the result is obtained, a Result class matching the
return from processing the actions method is determined. A new instance of this return class is created and

invoked.

1333

Appendix B

0O Processing by Interceptors — The response passes through the interceptors in reverse order to perform any
clean-up or additional processing.

O Responding user—The control is returned back to the Servlet engine and the result is rendered to the user.
This was how different components interact internally, but the high level design pattern followed by Struts 2
Framework is MVC 2, similar to Struts 1, and the different components represent the different concerns of MVC
2 design pattern. The Model, View and Controller are represented by different Struts 2 components Action,
Result and FilterDispatcher, respectively. The MVC pattern implementation through Struts 2 components is
shown in Figure B.4:

Modsl

Action

{5) State Query

(2) State Change

{3) Change notification

{4) View selection
View i Controllsr

Resuft p FilterDispatcher,
{1) Userinputs -

Figure B.4: Struts 2 Components and MVC Pattern Implementation

The work flow is broken into the following steps:

1. The user sends request through a user interface provided by the View, which further passes this request to
the Controller, i.e. FilterDispatcher which is a Servlet filter class.

2. The Controller Servlet filter receives the input request coming from the user via the interface provided by
the View and instantiates an object of suitable Action class, and executes different methods over this object.

3. If the state of model is changed, then all the associated Views are notified for the changes. Otherwise, this
step is skipped.

4. Then the Controller selects the new View to be displayed according to the resuit code returned by action
and executes suitable Result to render the View for the client.

5. The View presents a user interface according to the Model. The data is also contained within the Model i.e.
actions. View queries about the state of Model to show the current data which is pulled from the action
itself.

Similar to Struts 1, Struts 2 implements front controller approach with MVC 2 pattern, which means there is a
single controller component here. All requests are mapped to this front controller, ie.
org.apache struts2.dispatcher FilterDispatcher class. The main work of this controller is to map user requests to
proper actions. Unlike Struts 1, where actions are used to hold the Business logic and the model part represented
by form beans, in Struts 2 the Business logics and model both are implemented as action components. In
addition to JSP pages, in Struts 2 View can be implemented using other Presentation layer technologies, like
Velocity template or some other presentation layer technology. We will study the working of Struts 2
Framework in detail later in this appendix with the involvement of other Struts 2 components, like Interceptors.

Let’s now explore the features of Struts 2, which make it so popular.
Features of Struts 2

Struts 2 was created with the intention of streamlining the entire development cycle, from building, to
deploying, to maintaining applications over time. These goals are achieved by Struts by providing the following
features supporting building, deploying and maintaining applications:

1334

“Struts 2-Advancement in Web Technology

Build Supporting Features

The Build supporting features of Struts 2 are described as follows:

@ New projects can be started easily with the online tutorials and applications provided by various Struts
forums.

Q Stylesheet-driven form tags provide decreased coding effort and reduce the requirement for input
validation.

0 Smart checkboxes are provided with the capability to determine if the toggling took place.

O Cancel button can be made to do a different action, Generally, Cancel button is used to stop the current
action.

0 It supports AJAX tags that provide an appearance similar to standard Struts tag and help to design
interactive Web applications.

U It provides integration with the Spring application framework, which is also an open source application
framework for the Java platform

O Results obtained after the processing can be processed further for JasperReports, JFreeChart, Action
chaining, file downloading, etc.

O It uses JavaBeans for form inputs and putting binary and String properties directly on an Action class.

& There is no need of interfaces because the interfacing among the components is handled by the Controller
and any class can be used as an Action class.

Deployment Supporting Features
The deployment supporting features of Struts 2 are as follows:
0 It allows framework extension, automatic configuration, and plugins to enhance the capabilities and add
new features in future.
O Error is reported precisely by indicating the location and line of an error, which helps in debugging.

Maintenance Supporting Features

O Struts Actions can be tested directly, without using the conventional mock HTTF objects to debug the
application.

O Most of the configuration elements have an intelligent default value that can be set only once.

G Controller can be easily customized to handle the request per action. A new class is invoked for handling a
new request, '

O It provides built-in debugging tools to report problems; hence not much time is wasted in the manual
testing,.

O It supports JSP, FreeMarker, and Velocity tags that encapsulates the Business logic and requires no need to
learn taglib APIs.

Relation between WebWork2 and Struts 2

Struts 2 Framework is based on the WebWork2 Framework. One may think that Struts 2 is an extension of
WebWork2, but it is not so. Struts 2 Framework includes features of both WebWork?2 and Struts 1 Framework.

Since the arrival of the Apache Struts in year 2000, it has enjoyed a great run among the developer’s community.
Struts 1 provided a solid framework to organize a mess of JSP and Servlets to develop Web applications, which
mostly used server generated HTML with JavaScript for client-side validation. These Web applications were
easier to develop and maintain. As time passed, even though the customer’s demand for Web applications
increased, Struts 1 remained the same. Struts 1 was unable to cope with the growing demands of the customers.

In year 2005, the developer’s sat down to discuss the future of Struts project. They came up with Struts Ti
proposal. The Struts Ti was also a Struts Framework with some advanced features. But the problem was that
Struts 1 was unable to cope with the advancement in technology. So the developers decided to join hands with
WebWork developer’s team in order to provide a new and efficient framework to the users. The WebWork
Framework was part of OpenSymphony and at that time the latest version of this framework was WebWork2.
This new framework was meant te provide support for almost all the new technologies which were present at

1335

Appendix B

the time for developing a Web application. The Struts and WebWork was then merged together to provide a new
framework called Struts 2.

The Struts 2 Framework is dependent on the WebWork2 Framework. The code of WebWork2 was included in
Struts 2. Though Struts 2 has incorporated Struts 1 features, drastic changes have been made in Struts 2 in order
to make this framework simpler and easy to use for the developers. It has included features, like Interceptors,
Results, etc. from the WebWork2. Several files and packages were included from WebWork2 in Struts 2
Framework. Some elements were included as it is, while others were included with some changes, e.g. names of
some packages, files, etc. are changed, but their structure remains same. Some of the features from WebWork
were removed. New features were added in Struts 2 Framework, but the core part of this new Struts 2
Framework was based on the WebWork2 Framework.

The architecture of Struts 2 is fully taken from the architecture of WebWork?2 Framework. The processing of the
request in Struts 2 is almost the same as that in WebWork2, There are a number of extra plug-ins that are
included in the Struts 2 as compared to WebWork2 Framework.

Thus, it can be said that Struts 2 Framework is very much dependent on the WebWork Framework.

Changes from WebWork2

1336

Both Struts 2 and WebWork?2 are frameworks, which are used to create Web applications based on the MVC
architecture. There are a number of changes in Struts 2 Framework as compared to WebWork?2 Framework.
Some of the features are added or changed, some even removed from the Struts 2 Framework. Also some of the
members are renamed in the newly created Struts 2 Framework. But, the basic implementation at most of places
is same. To make the picture clear, let’s take a look at the changes between WebWork2 and Struts 2 Framework.

There are several features which are changed from WebWork2 while developing Struts 2. Some of them are as
follows:

QO ConfigurationManager is no longer a static factory; an instance is created through Dispatcher,
DispatcherListener is used for custom configuration.

The tooltip library used by xhtml theme was replaced by Dojo’s tooltip component.

Tiles integration is available as a plug-in.

Wildcards can be specified in action mappings.

To allow field errors/action errors to be stored and retrieved through session,
MessageStorelnterceptor is introduced. Messages are also stored and retrieved through session.

There are several features which are removed from WebWork2 to develop Struts 2. Some of them are as follows:

OoDDODoD

8 AroundInterceptor—The ArcundInterceptor is removed in WebWork2, If you are extending the
AroundInterceptor in your application, import the class into your source code from WebWork2 and
modify it to serve as your base class, or rewrite your Interceptor.

oldSyntax — The oldSyntax is removed from WebWork2.

Rich text editor tag —Rich text editor tag is removed and is replaced by the Dojo’s rich text editor.

Default method —doDefault is not supported for calling the de fault method.

loC Framework — The internal IoC frameworik has been deprecated in WebWork 2.2 and removed in Struts
2. Struts 2 Framework has a Spring plugin for implementing the IoC. This is implemented by using the
factory, ObjectFactory.

Table B.1 shows the members that are renamed in Struts 2:

0opDpDaOo

Table B.1;: Renamed members in Struts 2

com.opensymphony.xwork, * Com.opensymphony.xwork2 .*
cam, opensymphony , webwork .* org.apache.struts2.*
Xxwork.xml struts.xml

Struts 2-Advancement in Web Technology

Table B.1: Renamed members in Struts 2

g

webwork.properties struts,.properties

DispatcherUtil Dispatcher

com.opensymphony.webwork.config.

Configuration org.apache.struts2.config.Settings

In the following example, the tag prefix conventions are changed in Struts 2:

J58 EH <g:form ...>»

Freemarker s. <@s.form ,..>

Velocity s #sform (...)
Architecture of Struts 2

The architecture of Struts 2 Framework is fully based on MVC architecture. The $truts 2 architecture has a
flexible control layer based on standard technologies, like JavaBeans, ResourceBundles, XML, Locales, Results,
Interceptors, etc. The architecture of the Struts 2 is shown in Figure B.5:

Figure B.5: Architecture of Struts 2 Framework

The various components of Struts 2 can be categorized into the following groups, according to the Struts 2
architecture:

O Servlet Filter—The ActionContextCleanUp, FilterDispatcher, and SiteMesh (and other filter)
components are treated as Serviet filter component.

O Struts 2 Core—IctionProxy, ActionMapper, Tagsystem, ActionInvocation,
ConfigurationManager and Result are treated as Struts 2 Core component.

1337

Appendix B

O Interceptors —Interceptors are presented both above the Action component and below the Result
components.

Q User created components—The struts.xml file, Action classes, and Templates are treated as user created
components, Here the user is allowed to change these configurations.

In the Figure B.5, first the client request passes through the Servlet container, such as Tomcat. Then the client

request passes through a chaining system, which involves the three components of Servlet filters.

In the chaining system, first the HttpServletRequest goes through the Act ionContextCleanUp filter. The
ActionContextCleanUp works with the FilterDispatcher and allows integration with SiteMesh. Next
the FilterDispatcher invokes the ActionMapper to determine which request should invoke an Action. It
also handles execution actions, clean up ActionContext, and serves static content, like JavaScript files, CSS
files, HTML files, etc. whenever they are required by various parts of Struts 2.

The ActionMapper maps HTTP requests and action invocation requests and vice-versa. The ActionMapper
may return an action or return null value, if no action invocation request matches.

When the ActionMapper wants that an Action should be invoked, the ActionProxy is called by interacting
with the FilterDispatcher. The ActiconProxy obtains the Action class and calls the appropriate method.
This method consults the framework Configuration Manager, which is initialized from the struts.xml file.
After reading the struts.xml file, the ActionProxy creates an ActisnTInvocation and determines how the
Action should be handled, ActionProxy encapsulates how an AcHon should be obtained, and
ActionInvocation encapsulates how the Action is executed when a request is invoked. Then the
ActionProxy invokes Interceptors with the help of ActionInvocation. The main task of Interceptors is to
invoke the Action by using ActionTInvocation.

Once the Action is determined and executed, the result is generated by using Result component, The Result
component lookup data from the Template with the help of Action result code mapped in struts.zml. The
Template may contain JSP, FreeMarker, or Velocity code which is used to generate the response. The Template
uses the Struts Tags, which are provided by the Struts 2 Framework. After collecting data/result from Template,
the Action Invocation produces the result with the help of Interceptors.

Before, we conclude our discussion over Struts 2 architecture and how the different events take place one after
another when a request is processed in Struts 2 based Web application, let's go through a few more important
Struts 2 concepts in brief — Interceptors, ValueStack, and OGNL.

Intercepiors

The architecture of Struts 2, shown in Figure B.5, shows a number of interceptors being executed before action
and after result is executed. Interceptors are key concepts being utilized in Struts 2 Framework. Interceptors
allow you to develop code that can be run before and/or after the execution of an action. Interceptors may also
provide for Security checking, Trace Logging, Bottelneck Checking by using the interceptor package. We have a
stack of interceptors being executed before action and they can be considered as a kind of request processor in
Struts 1. Different sets of interceptors can be used in the stack according to the common functionalities being
provided by them. Each interceptor simply defines some common workflow and crosscutting tasks which make
them separate from other concerns and makes them reusable.

Interceptors have been covered for all its functioning, and configuration details in appendix 4.

ValueStack and OGNL

1338

Some important concepts implemented in Struts 2 are ValueStack and the expression language to interact with
this ValueStack, i.e. Object Graph Navigation Language (OGNL). A ValueStack can be defined as a storage
structure where the data associated with the current request is stored. As the name suggests, ValueStack is a
collection of data stored in a Stack. OGNL expression language is used to retrieve and manipulate data from
ValueStack. The data can be set into ValueStack during the pre-processing of the request, manipulated when the
Business logic in action is being executed, and read from ValueStack when the Result renders the response for
the client.

Struts 2-Advancement in Web Technology

Comparing Struts 1 with Struts 2

Struts 2 Framework is a new framework, but it can easily be grasped for its new concepts and implementations
by comparing it with the most popular Web application Framework, i.e. Struts 1. This comparison is important
as both, Struts 1 and Struts 2, share a common implementation in terms of MVC 2 pattern and action based
approach in the development of components. There are also some advanced features which are added in the
new Struts 2 version, such as Interceptors, XWork Validation Framework support, OGNL support, integration
with other frameworks using various plugins, POJO Action, POJO Forms, etc. There are lots of changes which
we can observe in Struts 2 Framework, But the basic implementation at most of the places is same as in Struts 1.
To make the picture clear, let's take a look at the similarities and differences between Struts 1 and Struts 2
Framework.

Similarity between Struts 1 and Struts 2

Both Web applications framework, i.e. Struts 1 and Struts 2, provide the following key components:

@ Both versions follow the MVC 2 architecture.

G Both versions use a request handler that maps Java classes to Web application URIs,

O Aresponse handler that maps logical names to server pages, or to other Web resources in both Struts 1 and 2.
a

A tag library helps us to create rich, responsive, form-based applications, and generate dynamic content of
web pages in both versions of Struts.

In Struts 2, all the preceding concepts are redesigned and enhanced, but the same architectural hallmarks
remained.

We have discussed the similarities between Struts 1 and Struts 2. But the Struts 2 Framework introduces a
number of new concepts and type of implementations. Let’s now discuss the key changes in Struts 2, as
compared to the Struts 1.

Difference between Struts 1 and Struts 2

In addition to various similarities between Struts 1 and Struts 2, there exists various differences as well that gives
Struts 2 an edge over the its counterpart. The description of these differences, shown in Table 1.2, is helpful
while migrating from Struts 1 to Struts 2. These points help in getting aware of the differences between Struts 1
and Struts 2 components. Further, the comparison makes the benefits of Struts 2 over Struts 1 clear to the reader.
Table B.2 describes the differences between Struts 1 and Struts 2:

‘Table B.2: Difference between Struts 1 and Struts 2
Feature Struts 1 Struts 2

Action classes For developing Struts controller component { In Struts 2, an Action may implement

of MVC model, the Action classes are needed, | com.opensymphony.xwork2 .Action interface
which extends the Abstract base class. This is | along with other interfaces to enable optional and
a common problem in Struts 1 to program } custom services. Struts 2 provide a base

abstract classes rather than interfaces com.opensymphony. xwork2.ActionSupport
class to implement the commonly used interfaces.
Thus, Action interface is not required. Any POJO
object with a execute signature can be used as a

Struts 2 Action object
Binding values into § To access different objects, Struts 1 uses the § The technology ValueStack is used in Struts 2, so
views standard JSP mechanism for binding objects | that taglibs can access values without coupling your
into page context JSP view to the object type it is rendering. Reuse of

views to a range of types that may have same
property name but different property types are
allowed by using valueStack strategy

Servlet When an Action is invoked the Struts 2 Actions are not coupled to container.
Dependency HttpServletRequest and Servlet contexts are represented as simple Maps
) i HtrpServletResponse are passed to the that allow Actions to be tested in isolation. If

1339

Appendix B

1340

Table B.2: Difference between Struts 1 and Struts 2

Feature

Struts 1

Struis 2

execute () method. That's why Struts 1
Actions have Servlet dependencies

required, the original request and response can still
be accessed in Struts 2

Thread Modelling

There is only one instance of a class for
handling the entire requests specific to a
particular action, Thus Struts 1 Actions are
singleton and must be thread-safe. The
singleton strategy places restrictions on what
can be done by using Struts 1 Actions and
thus requires extra care to develop

There are no thread-safety issues because Action
abjects are instantiated for each request in Struts 2

Testability

The execute method exposes the Servlet APL
this is the major hurdle for testing Struts 1
Action

The testing is done by instantiating the Action,
setting properties, and invoking methods. Also the
dependency injection support also makes the
testing simpler

Control of Action
Execution

Struts 1 supports separate Request Processors
(life~cycles) for each module, but the same
Life-cycle is shared to all the Actions in the
module

Struts 2 supports creation of different life-cycles on
a per Action basis via Interceptor Stacks. Whenever
needed custom stacks can be created and used with
different Actions

Harvesting Input

To capture input, Struts 1 uses an object of
ActionForm. All ActionForms must extend a
base class. Since other JavaBeans cannot be
used as ActionForms, developers often create
redundant classes to capture input,
DynaBeans can be used for creating
conventional ActionForm classes, but here
too developers may be redescribing the
existing JavaBeans

Struts 2 eliminates the need of second input object
by using action properties as input properties. This
Action property is accessed from the web page via
the taglibs. Struts 2 also support POJO form objects
and POJO Action. Input properties may be rich
object types with their own properties. Rich object
types, which include business or domain objects,
can be used as input/output objects

Expression
Language (EL)

Struts 1 supports JSTL, so it uses the JSTL EL.
The EL has relatively weak collection and
indexed property support

The Struts 2 Framework supports Expression
Language (EL) that is known as Object Graph
Notation Language (OGNL). The EL i more
powerful and very flexibie. Struts 2 alse support
JSTL

Validation

Validation in Struts 1 is supported by a
validate method on the ActionForm, or by
using a Validation Framework thorough a

plugin

Validation in Struts 2 is performed by the validate
method and the XWork Validation framework. The
XWork Validation framework supports the
chaining validations into the sub-properties by
using the validations defined for the properties
class type and the validation context

Type Conversion

The type-conversion is performed by
Commons-Beanutils. The properties of Struts
1 ActionForms are usually of String type

The type-conversion is performed by Object Graph
Notation Language (ONGL)

This comparison between Struts 1 and Struts 2 is hel
Framework for Web application develo

makes it preferred over Struts 1.

This appendix embarks with Struts 2 Framework and Web a
introduction of Struts 2 Framework —a powerful and flexible Web a
a discussion on WebWork2 and Struts 2 that brings various archi
terminology, such as Interceptors, Results,

comparison of Struts 1 and Struts 2.
The next appendix describes Enterprise Java Beans (EJB).

pful for the developers who have interacted with Struts 1
pment. This explains where Struts 2 is different from Struts 1 and what

pplication Frameworks, followed by the
pplication Framework —and moves towards
tectural views, which further creates a new
ValueStack, OGNL, and more. The appendix concludes with the

G NN T S o

T, AT B S O YT

Understanding EJB 3.0

An enterprise level application developed on Java Platform, Enterprise Edition (Java EE) should be distributive,
transactional, secure, and portable. To ensure that the application supports all these features, developers have to
provide extra code and logic for the implementation of various low level interactions, which can distract the
developers from the actual business logic implementation. So, to overcome this problem, we use a user-defined
component, which is used by the container to ensure security, manage transaction, implement automatic object
persistence, and enhance portability.

In this appendix, we are introducing a new technology called server-side component architecture for Java EE,
more commonly known as Enterprise JavaBeans (EJB). The use of EJB component helps in easy and fast
development of distributed, transactional, secure, and portable Java applications. E[B components and EJB
containers used in application servers reduce the efforts of the developers, as they do not need to understand
low level transaction and state management details, connection pooling, multithreading, and other similar
complex processes related to application development, which are now provided by the container.

The Java EE 5 specification supports Enterprise JavaBeans 3.0 (EJB 3.0), the latest version of EJB. In this
appendix, while discussing the EJB technology, we mainly focus on the new concepts introduced by EJB 3.0, and
how it has made developing a Web application easier.

EJB 3.0 Fundamentals

Enterprise JavaBeans is a standard architecture used for enterprise level distributed applications that are object-
oriented, transaction-oriented, as well as distributed. Implementing the Enterprise JavaBeans architecture means
creating enterprise bean components that are managed by EjB container in the application server. The enterprise
bean implements the business logic, which can operate on enterprise data and is nermally defined through some
enterprise bean methods. These enterprise bean methods can be accessed and invoked by remote clients. The
behavior of these enterprise beans can be customized at the time of their deployment by changing the entries in
the deployment descriptor. The enterprise bean instance is created and managed by the EJB container where it is
deployed. In addition to business logic, we can also provide service information by using annotations in the
enterprise bean itself or declaratively in the deployment descriptor. The enterprise beans can use the container
for all the services defined in the specification. We need to create a client view of the enterprise bean. The client
view refers to creating another enterprise component or other Java program, such as applet and Servlet, to access
enterprise bean and its business methods. The client view of the enterprise bean is independent of the type of
container and server in which the enterprise bean is deployed.

EJB architecture is flexible and helps in implementing the enterprise bean in various scenarios as mentioned
here:

O The enterprise bean can be used to provide all stateless services.

O The enterprise bean can be used as a Web service endpoint that provides stateless service.

Appendix C

8 The enterprise bean can be used to provide stateless service asynchronously with the arrival of some
message.

O The enterprise bean can be used to provide stateful services, where the conversational state of a client is
maintained.

O The enterprise bean can be used as an entity that represents a persistent object that is managed
automnatically for its persistence and relation with other entities,

There are different types of enterprise beans, which can be used in a Web application, depending on the

scenarios discussed earlier. Let's start discussing why EJB 3.0 is required and then discuss different EJB concepts

and their architecture.

Why EJB 3.07

The previous version of EJB, EJB 2.1, was powerful enough to support all the needs of a distributed enterprise
application, but it was very complex to develop because a developer has ta create a number of interfaces and
classes for implementing single enterprise bean. In addition to this, all interfaces and classes developed were
required to implement interfaces and extend classes from javax. ejb package. The client, therefore, had to use
JNDI ook up to access enterprise bean and invoke its business methods.

The EJB 3.0 introduced with Java EE 5 specification has made Enterprise JavaBeans technology simpler and
easier to be implemented in the application. EJB 3.0 needs fewer interfaces and classes as it supports metadata
annotation to support dependency injection. The use of default behavior and configuration through annotations
has further removed the need of deployment descriptors, and the entity persistence and Object/Relational
mapping has also been simplified. In EJB 3.0, since the container has to work more for doing all the processing, it
gives developer enough time to concentrate on the implementation of business logic, thereby increasing the
productivity of the developer. The EJB 3.0 enhances business logic implementation and speeds up the enterprise
bean development.

Some facts about EJB 3.0 are as follows:)
QO EJB 3.0 leverages Java language metadata, which helps simplify all bean types, and resource accesses, It

reduces the need of deployment descriptors but preserves the ability to use XML file as an alternative
mechanism and overriding annotations.

O The enterprise beans now resemble Plain Old Java Objects (POJO) and do not need to implement EJB
component interfaces.

O All Business interfaces are also Plain Old Java Interfaces {POTT).

Q@ The Home interfaces are not required any more in EJB.

O In EJB 3.0, all callback methods are defined by using annotations, because javax.ejb.EnterpriseBean
interfaces are not used in it.

8 The persistence model is simplified.

B EJB 3.0 specification always ensures that the EJB 2.1 API is available and supports the reuse of existing
components in the new application. EJB 3.0 specification helps in migrating from previous EJB 2.1
application to new EJB 3.0 applications. :

£JB 3.0—Architecture and Concepts

1342

The EJB 3.0 architecture comprises the EJB server, EJB container, and EJB client. In this section, we discuss how
the container providers can change EJB processing model.

The first model is to process an EJB file to generate deployment artifacts (required interfaces and deployment
descriptors) closer to the EJB 2.1 deployment model and then deploy the EJB component in the same way as EjB
2.1 deploys it. Of course, the deployment descriptors and files generated can be non-standard, but they might
resemble the deployment descriptors in EJB 2.1. This approach reduces rework for container providers and also
reduces the burden of supporting both EJB 2.1 and EJB 3.0-style EJB components. Figure C.1 shows the EJB
architecture:

Understanding EJB 3.0

Deployabie File
EJB3.0 Deployment Generated :
Sourc Config files . Interfaces & Ciasses |
e Processor Tool : P :
Class {Containe!lDES —— Produces ——— | P :
Third Party} : [;

gib-jarxmli |container-| |

gibdarxmlj :
Remote :

Figure C.1: EJB Architecture
Another EJB 3.0 processing model is a JSP-like (JavaServer Pages) drag-and-drop deployment model. Now you
can drop an EJB file into a pre-designated, implementation-defined directory. The container picks it up,
processes it, deploys it, and makes it available for use.

Now let’s discuss the EJB architecture in detail by understanding EJB server, EJB container, and EJB clients.

EJB Server
An EJB server provides a runtime environment to execute server applications that use enterprise beans. An EIB
server is used to create an infrastructure to deploy server applications, also called components. The E]JB server
provides a JNDl-accessible naming service, manages and co-ordinates the allocation of resources to client
applications, provides access to system resources, and provides a transaction service.

In the EJB architecture, servers are basically the resource managers. Every server manages the allocation of
resources to the containers it controls. It is the resource manager that determines which and how many of the
containers may run within the server. Following points show what a server does in the EJB architecture:

0 At the client-level, the server manages all incoming client requests. This also includes providing connections
to clients, dispatching client requests to containers, and routing responses back to clients.

O At the container-level, the server manages the processing of the resources that are available to the
container. This type of management includes allocating available working processes and threads to the
running containers.

0 At the service-level, the server verifies that the container has access to shared services, such as a centralized
security manager, a pool of JDBC drivers, a transaction service implementation, a global cache manager,
and an asynchronous messaging service.

You can run an EJB application on more than one server. So, in addition to allocating resources to the containers
managed by the servers, the servers must cooperate as a group to allocate resources efficiently across all the
servers in a cluster. This cooperation among the servers involves publishing the load information to a load
balancing process, and then assigning the client requests to the least-loaded server to provide the requested
services, It also includes system management infrastructure, such as demons, that automatically starts server
processes, alerts to a management console when the server load exceeds a certain level, and management
interfaces for controlling the resource allocation policies of the server.

EJ)B Container
The EJB container provides an environment in which one or more enterprise beans can run. This environment is
basically a combination of available interfaces and classes that the container uses to support enterprise beans
throughout their life-cycle. The EJB container performs the following tasks:

O The EJB container transparently provides services by intercepting all method calls to the EJB components.
O The EJB container provides following control and management services:

e Life-cycle management—Creates and removes enterprise bean instances, handles instance pooling
with their activation and passivation.

« Naming services - Provides JNDI registration of EJB when the enterprise bean is loaded.

1343

Appendix C

1344

* Security checks—Performs authentication and access control and implements declarative and
programmatic security.

* Persistence management— Helps in storing the enterprise beans,
¢ Transaction coordination— It is the declarative transaction management
* Resource pooling —It is an indirect access to the bean instance

The EJB container simplifies the complex aspects of a distributed application, such as security, transaction
coordination, and data persistence. The EJB infrastructure is implemented by EB container and service
providers. This infrastructure deals with the distribution aspects, transaction management, and security aspects
of an application. The Java APIs for the infrastructure is defined by EJB specification. Now the developers focus
on their area of expertise -- the Business logic — and leave the infrastructure to the platform specialists. Figure
C.2 shows various services provided by EJB container:

State
Maragerment

4

Persistence Life-cycle

F 3

F r

Remote Security

Transacti .
ansaction interface

Figure C.2: Services Provided by Container
The responsibilities of an EJB container for each enterprise bean are as follows:
It registers the object.
It provides a Remote interface for the object.
It creates and destroys object instances.
It checks security for the object.
It manages the active state for the object (activation/ passivation).
It co-ordinates distributed transactions.
It persists CMP entity beans, and saves stateful Session beans attributes when passivated,

Whenever a client wants to call business methods of an enterprise bean, it actually connects to the container first.
The container then verifies that the call conforms to the semantics specified in the deployment descriptor before
dispatching the call to the EJB itself. This mechanism allows the container to control all aspects of the execution
of an EJB, including the following;

OO0 0O0Cc oo

O Lifecycle—The life-cycle methods of the enterprise bean are invoked as per the specification. While
managing the life-cycle of an enterprise bean, the container itself enforces security, transaction, and
persistence requirements.

O Security —When a client attempts to call a method of an EJB, the container looks for the user’s permission in
an Access Control List (ACL) to verify whether the client has the right to invoke that method. The
deployment descriptor object contains declarations about the access control for an EJB’s methods.

0O Transactions —These are the declarations about the transaction restrictions on an EJB’s methods included in
the deployment descriptor object. When a client attempts to call the method of an EJB, the container is
responsible for verifying whether the call obeys the transaction restrictions on that method. The restrictions
for execution of a transaction are as follows:

* It must not execute within a transaction context.

e It may execute within a transaction context.

Understanding EJB 3.0

s It must execute within a transaction context, and it must execute within a new transaction context.

@ Persistence — We can use two different types of persistence-one that is managed by bean itself and the other
that is managed by the container. In case of the persistence managed by beans itself, the bean needs to
implement its own data access code, while in the persistence managed by the container, the enterprise bean
delegates data access to the container, thus making the container responsible to implement appropriate data
access functioning,

EJB Client

The client code is the code written to execute business logic embedded in enterprise bean and its methods. EJB
client can be a simple Java program or a Web client. The end-user runs these clients to get results from the
enterprise bean method invocation. An EJB client can use resource injection or JNDI service to access an
enterprise bean. The client code can be a simple Java class, Applet, Servlet, or JSP. An enterprise bean is looked
up using resource injection or lookup() method, irrespective of the different EJB clients.

Features of EJ8 3.0

EJB 3.0 specification addresses all the complexities that it has in iis previous versions and solves them by
implementing new strategies. The new features added in the EJB 3.0 have changed the way the enterprise beans
are developed, configured, and deployed. The extensive use of metadata annotations has reduced the use of
different interfaces and classes and deployment descriptors. The interfaces required in an application and
deployment descriptor generation are now taken care of by the container. This has relaxed developers from
developing unnecessary local or remote home and component interfaces. The callback methods can easily be
marked in the enterprise bean now. The enterprise bean has been simplified to a POJO model and all resources
to be used by the components are injected using dependency injection. The features of EJB 3.0 have been
summarized here:

Annotations
A new program annotation facility-has been introduced in the Java Platform, Standard Edition, 5 (Java SE 5).
These metadata annotations (or simply the annotations) are inspected at compile time or runtime by the different
tools to generate additional constructs, such as deployment descriptors, and to customize the component’s
runtime behavior. We can annotate class fields, methods, and classes. EJB 3.0 proposed a set of annotations that
has made development of enterprise beans easy. We can mark interfaces, classes, fields, and methods created for
an EJB implementation with different annotations, such as @Remote, @Stateful, and @Stateless. The annotations
indicate that the associated element maintains seme application-specific or domain-specific semantics.
Annotation should only be provided when defaults cannot be used. For example, for an enterprise bean
CustomerBean, we do not need to extend javax.ejb.EnterpriseBean type of class; instead, we can use
@Stateless annotation to declate it stateless session bean, as shown in the following code snippet:

Elimination of Home Interface
In EJB 3.0, all enterprise beans are created homeless. It means that we do not need to create home interface for
the enterprise bean. In EJB 2.1, we need to create a home interface by extending javax.ejb.EJBHome interface
or javax.ejb.EJBLocalHome interface and declare life-cycle methods, such as create() and remove(). In EJB
3.0, we do not need to create locale or remote home interfaces for the enterprise bean. The EJB 2.1 APlIs are still
supported in EJB 3.0 specification and the home interfaces can still be used, which supports reverse compatibility
with previous versions.

1345

Appendix C

Elimination of Component Interface

Cal

The earlier versions of EJB require the [ocal or remote component interfaces to be created for the given enterprise
bean. The local and remote component interfaces need to extend javax.ejb.E]BObject and
javax.ejb.EJBLocalObject respectively. The component interfaces were used to declare the business methods that
a client could invoke. In EJB 3.0, you do not need to create component interfaces as they have been replaced by
business interfaces that declare all business methods to be provided to the client. The business interface can be
lacal or remote, but it is a simple POJI (Plain Old Java Interface).

Iback Methods

In EJB 3.0, we do not need to define all the unnecessary life-cycle callback methods, such as ejbPassivate ()
and ejbActivate (), in the enterprise bean class. In the earlier versions, we have to define these callback
methods but in EJB 3.0, they have become optional. However, we can define any of these methods in our bean
class to which the container can invoke. In EJB 3.0, we can mark an arbitrary method as the callback method,
which can listen EJB life-cycle events. We can use different metadata annotations, such as @PreDestroy,
@PostConstruct, @PrePassivate, @ ostActivate, and @Remove to mark a method as callback method. A sample
enterprise bean method marked with @PreDestroy is shown in the following code snippet:
-@stateful Lo R S o D R

public .class SemeSessionBean..

£

@PréD_e_stroy .
public void someMethod(),

. /*Some Logic tb'_:'be’:'i'axe;utéd be_fpre_t!ﬁéf'désffoy(:): method* e

-}

Simple POJO Model

EJB 3.0 supports a simple Plain Old Java Object (POJO) model. A simple Java class which does not implement
any interface or extends any class can be treated as an enterprise bean. A simple POJO object can be made a
powerful component handling concurrency, transactions, and security issues. All these are provided by the
container to the simple POJO objects.

The POJO model also helps in creating enterprise bean classes that do not depend on other APIs. The POJO
objects help in implementing the unit testing by using frameworks, such as JUnit, without deploying them on a
server.

The implementation of POJO model has totally simplified the development of enterprise beans. Now we just
need to create simple business interfaces that are the Plain Old Java Interfaces {POJIs), and implement business
methods in enterprise bean class which is a Plain Old Java Object (POJO). All the resources are made accessible
in the component by resource injection using metadata annotations, and all callback methods can be marked
with metadata annotations.

Java Persistence API

1346

EJB 3.0 provides a new Java Persistence API, which further simplifies the programming model for entity
persistence. The Object/Relational mapping and all persistence logic is now handled by the container and we
just need to provide proper annotations, such as @Id, @Table, @0OneToOne, and @0neToMany. These
annotations are used to map entities and their relationships to application’s database. The long term storage of
this large amount of information has been simplified by Java Persistence API. The first release of Java EE 5
introduced entity bean as a solution to Java Persistence. The introduction of the entity bean has prevented the
developers to directly deal with the persistence. But the first release of the technology lacked many features,
such as annotations, and provoked many problems to the developers. Some of the major problems were:
relationships of the entities which had to be managed by the applications, foreign key fields were required to be
stored and managed on the bean class. The EJB2.1 specification solved many of the problems by introducing the
idea of container-managed entity beans. In the container managed entity bean, the server was responsible for
generating subclasses to manage the persistent data. The EJB2.1 specification also introduced the Enterprise Java

Understanding EJB 3.0

Bean Query Language (EJBQL)—a query language designed to create queries for CMP entity beans. This

language is similar to SQL but searches for persistent attributes of the enterprise Java bean.

EfB 2.1 specification, despite of improved features than its earlier versions, was still overloaded with the major

problems and complexities. The EfB 3.0 provides new Java Persistence API, which simplifies the programming

model for entity persistence. Now Object Relational Mapping or Persistence approach uses POJO model instead

of abstract persistence schema model. The Object Relational mapping maps entities and their relationships to

application’s database. EJB 3.0 entity depicts persistent information stored in database by using Container

Managed Persistence (CMP) but EJB 2.1 entity bean only represents persistent information stored in the

database. The optimistic locking technique that was supported only by TopLink persistence framework is also

encapsulated in EJB 3.0 specification. It also enhances R/W access ratios. The optimistic locking technique allows

you to use objects in a disconnected meodel implying that you can change data and their relationships offline and

merge data operations into one transaction. We can also create deep and wide entity inheritance hierarchies.

Other changes made in the Java Persistence APL, which were not there in EJB2.1, are as follows:

Q It requires less number of classes and interfaces.

Q New EntityManager APl similar to Hibernate, is introduced to perform operations, such as creation,

removal, and searching on entity beans.

The lengthy deployment descriptors have been eliminated through annotations.

It provides cleaner, easier, and standardized object-relational mapping.

The need for lookup code has also been eliminated.

It adds support for inheritance, polymorphism, and polymorphic queries.

It adds support for named (static) and dynamic queries.

We can now perform many database related operations, instead of performing only one operation

generating primary key.

It provides a fava Persistence query language —an enhanced EJB QL.

@ It makes testing the entities without the EJB container easier. Earlier, the developers need to be aware of
deployment platform to test E]Bs.

These were changes in the new Java Persistence API, which is introduced with the new entity beans concept.

Do O0oOoo

o

Dependency Injection

The client, to use the constructed bean in an application, needs to know how to locate and invoke that enterprise
bean (constructed bean). The client for an EJB 2.1 session bean gets the reference of the session bean with JNDI.
In order to use an enterprise bean, say Calculator bean, the EJB 2.1 client needs to add the following code to
locate and invoke an enterprise bean method:

Context fe¢ = pew InitialContext(}; - = :

Object obj. =-ic. Tookup- {"Gn'izuuwrsmx o SR

: Ca1cu1atorﬂome home e : i b

(calcu]aturaame}Portah Remotaub;ect narrow(obj ca1cu1atornome.c1ass),.fg

- calculator calc = home.create(); . .
In the preceding code, the JNDI name of the Calculator bean is Calculator]NDI“ The local/ remote instance is
obtained with create() methed. But in EJB3.0, the JNDI lookup and create() method invocation is not required. In
EJB3.0, a reference to a resource is obtained with dependency injection using annetation. EJB, by implementing
dependency injection, conveys to the container that a particular resource is dependent on some resource. A
dependency annotation comprises the type of resource, the resource properties, and a name to access the
resource. The use of annotations in EJB 3.0 has simplified the task of both the developers and the EJB client.
Some examples of dependency annotations are as follows:

@EIB (hame="sessionBeanName", beanInterface=SessionBeanInterface,class)

@resource (name="Database", type="javax.sql.DataSource.class”}-
The @EJB annotation used here injects stubs of session bean having name “sessionBeanName”. The @Resource
anmotation is used to inject service object having JNDI name “Database”. This name may be present in either
global or local JNDI tree.

1347

Appendix G

Dependency annotations may be associated to bean class, its member variables or methods. The information to
be specified in dependency annotation depends upon the context and the amount of data to be fetched from that
context.

Timer Service

In enterprise applications, sometimes we need to implement time-dependent services. For example, we may
need to invoke a particular business method provided by enterprise bean after a given span of time or by
invoking them repeatedly after a fix time interval. Before EJB 2.1, developers had to write code manually for
building and deploying time-based workflows. However, with EJB 3.0, the task of creating such applications has
been considerably simplified. Equipped with annotations and dependency injections, developers can use EJB 3.0
to build and deploy scheduled applications easily. :

Interceptors

Classifying EJBs

1348

The interceptors intercept the invocation of business methods of enterprise bean to provide some additional
functionality. The interceptors are used with session beans and Message-driven beans. Interceptor methods to be
invoked before a business method can be defined in a separate class known as Interceptor class. For example, we
always want to validate all passed values to the business methods before the actual logic is executed. We can
invoke more than one interceptor on an EJB. :

We use @Interceptors annotation to import a chain of interceptors associated with the bean. We can define
interceptor methods using @AroundInvoke annotation. The following code snippet is used to add interceptor
methods to a bean:
colsvatefyl oo T
s anterceprors(iMethodProfiler. cTass}
i public class Someservicesean:

. o

R Tl

We have listed different scenarios in the enterprise application development where an enterprise bean can be
implemented. We have different types of enterprise beans to be implemented in these scenarios. The enterprise
beans can be classified into the following three types based on the type of functionality provided by them:

0 Session Beans: Holds business processes, such as delivering an order, doing financial calculations for an
application. The session beans are reusable components, which provide methods that can be accessed by the
client. All the services provided by the session bean are in the form of different methods.

Q@ Message-Driven Beans: Refers to the beans that are associated with some sort of messaging. Messaging is a
method of communication between software components or applications. A messaging system is a peer to
peer facility in which a messaging client can send messages to other clients, or can receive messages from
other clients. Java Messaging Server (JMS) is a core service provided by Java EE application servers. JMS
allows asynchronous invocation of different services via messages. JMS clients send messages to server
maintained message queues. To monitor message queues, we need a special kind of EJB, called message-
driven bean.

O Entity Beans: Represents persistent information stored in the database

This ends up the discussion on EJB.

e a mmma

A

AccessDataSource Class, 842
AccessDataSource Control, 797, 798, 841, 843, 867
ACID, 556, 557

Action tags, 413

ActiveStep property, 682

adaptability, 211

Advanced Encryption Standard (AES, 273
allowOverride attribute, 923
AllowZoneChange, 790

alphabetical, 218

AlternateText property, 648, 692
ampersand (&), 202

ampersand, 167, 202, 1042
AnonymousTemplate view, 874

App xaml file, 1002
AppearanceEditorPart control, 784, 785, 786
Appletlnitializer, 296, 315

Application pool, 942

Application Services, 572, 1238, 1239
arithmetic assignment operators, 174, 175
Arithmetic Operators, 128, 168, 172, 176
array index, 214, 485, 1143

array manipulation, 200
array_expression, 213, 216
array_intersect(), 218

Arraylterator, 216, 217, 229

ASCII characters, 205, 507

ASP.NET AJAX Control Toolkit (ACT), 1232, 1254
ASP.NET Membership service, 870, 876
ASP.NET MMC Snap-In Tool, 921, 926
aspnet_regiis tool, 922, 927, 928, 931, 943
aspnet_regsql tool, 922

assign by reference method, 167
atomicity, 247, 260

AuthorizationFilter, 789

Auto Commmit, 557, 558

B

base condition., 211

base_convert(), 210

BaseValidator class, 732, 733

batch update, 478, 517, 518, 519, 520, 521

‘Index

BatchUpadateException, 519, 520

BDK, 294, 295, 297, 299

BeanDescriptor, 296, 302, 303, 312, 315

BeanInfo, 293, 294, 295, 296, 297, 302, 303, 308, 309, 311,
312,315

BehaviorEditorPart control, 789, 790, 791, 793

BIGINTY{), 254

bindec(), 210

BLOB, 254, 473, 477, 497, 512, 521, 522, 523, 524, 550, 562

book_Name(), 201

bound properties, 297, 305, 309, 312

break statement, 136, 141, 142, 191, 192, 194

built-in constants, 169

built-in functions, 200, 202, 212, 1075, 1134, 1271

BulletedList Control, 621, 626, 661, 662, 663

C

CachedRowSet, 543, 544, 545, 546, 547, 553, 554, 555, 556,
561

CallableStatement, 467, 473, 483, 484, 488, 490, 491, 499,
500, 501, 502, 503, 504, 505, 506, 517, 522, 523, 525, 526,
527,558

Callback function, 212

caller function, 201

CancelButtonType property, 883

Cascading Style Sheet (CSS), 99, 624, 773, 1232

case-sensitive, 118, 203, 205, 230, 338, 415, 549, 758, 934,
1029, 1032, 1103

CataloglconImageUrl, 789

CatalogZone class, 768, 769, 774

CatalogZone control, 767, 768, 769, 771, 773, 774, 777, 796

ceil(}, 210, 231

change_Score(), 201, 202

ChangePassword class, 883, 886 .

ChangePassword control, 883, 884, 885, 886, 887

chdir(), 228, 233

Check Box, 92, 237

CheckBox Control, 621, 626, 669, 670, 672

checkdate (), 206

ChromeState, 773, 774, 776, 783

ChromeType, 773, 774, 776, 784

Cipher Block Chaining (CBC), 274, 280

Cipher Feedback (CFB), 274, 280

Index ' -

Class attribute, 1002, 1003

clearBatch(}, 485, 517, 520

Click event, 571, 634, 635, 640, 646, 667, 1005, 1008

ClientValidationFunction property, 743

Clob, 467, 496, 524, 525, 526, 527, 546

closedir(), 229

combine conditional, 187

Command event, 634, 635, 667

CommandName property, 635, 667

Common Language Runtime (CLR), 604, 994

CompareValidator control, 732, 740, 742

Comparison Operators, 129, 166, 172, 173, 176, 249, 256,
1130

Component Object Model, 157, 164

compound data, 169

concatenation operator, 173, 180, 1130

conditional and leoping statements., 182

Conditional and looping tags, 434

conditional statements, 156, 164, 182, 183, 186, 193, 195,
200,1131, 1154

ConnectionsZone class, 791, 792, 793

ConnectionsZone control, 791, 792, 793, 795, 796

CONSTANT_NAME, 168

constrained properties, 294, 297, 305, 312, 313

ContentPlaceHolder control, 896

ContentFlaceHolder tag, 898

continue statement, 142, 192, 193

Control Class, 620, 622, 623, 624

ControlToValidate property, 732, 735

Cookie class, 330, 366

Cookie, 262, 263, 264, 277, 278, 329, 330, 365, 366, 367, 374,
388

core presentation framework, 994

cos(}, 210

cosh(), 210

CREATE, 249, 252, 253

CREATE, 492

createArrayOf(), 535

createStatement (), 410, 438, 482, 487, 490, 491, 513,
515, 517, 518, 524, 526, 531, 532, 536, 558, 1200, 1210,
1220

CreateUserWizard class, 879, 882

CreateUserWizard control, 879, 882, 883, 885

Cross Site Request Forgery (CSRF), 269

Culturelnfo class, 949, 990

currency string, 205

current(), 216, 217, 1075, 1076

Customizer, 296, 315

CustomValidator conirol, 732, 737, 742, 743, 744, 748

Cyrillic character, 205

D

data bound controls, 798, 827, 836, 867
Data Control Language {DCL, 248, 260
Data Definition Language (DDL, 248, 260

1350

Data Manipulation Language (DML, 248, 260

Data property, 715, 862

data source controls, 798, 836, 867

Database Management System (DBMS, 246, 260

DatabaseMetaData, 467, 482, 558

DataBinding event, 754

DataFile property, 715, 841, 862

DatalList Class, 805, 806

DataList Control, 797, 798, 804, 806, 807, 867

DataPager Class, 827, 829

DataPager Control, 12 564, 797, 798, 827, 829, 867

datatypes, 253, 533, 562

DATE, 254, 477, 512

date_default_timezone_set(), 208

date_sunset(), 208

DATETIME, 254

daylight, 207, 946

debugging, 213, 287, 289, 338, 395, 565, 570, 605, 931, 937,
938, 985, 994, 1237

dechex(), 210

DECIMALC(,), 254

DeclarativeCatalogPart Class, 772, 773

DeclarativeCatalogPart control, 771, 772, 773

Deep Zoom Technology, 993

DefaultPersistenceDelegate, 296, 316

definite loop, 189

DescriptionUr] property, 692

DesignMode, 296, 315, 756, 824, 828, 834, 842, 847, 854,
861, 865, 866

destroy (), 287, 395

DetailsView Class, 809, 811

DetailsView Control, 797, 798, 808, 812, 813, 867

do-.while loops, 188

Document Object Model (DOM), 458, 993, 1027, 1053,
1054, 1058, 1104, 1106, 1110, 1111, 1123, 1141, 1150,
1154, 1232, 1234, 1265, 1309

DOUBLE(,), 254

do-while loop, 188, 189, 196, 1133, 1154

DROP, 249

Drop-Down Box, 238, 259

DropDownlList Control, 621, 626, 659, 660, 661

DropShadowExtender control, 1257

Dynamic menu, 714

E

each(}, 216

EditorZone Class, 779, 780

EditorZone control, 778, 779, 780, 781, 783, 784, 785, 786,
789, 790, 793, 796

Electronic Codebook (ECB, 274, 279

EnableViewState property, 691

Encoder, 296, 316

encodeRedirectURL(), 369

encryption,, 270, 271, 273, 278

end(), 216

Enforcing Data Rules, 245

index

ereg() function, 246

error objects, 1237

EventHandler, 296, 316

EventSetDescriptor, 296, 302, 303, 308, 309, 316

ExceptionListener, 296, 315

exec() and, 275, 280

execute(), 484, 490, 498, 500, 502, 503, 504, 506, 544, 545,
547

executeBatch (), 485, 517, 518, 520

executeQuery, 410, 438, 485, 490, 498, 507, 513, 515, 524,
526, 531, 532, 536, 555, 556, 558, 1200, 1210, 1220

exit statement, 193

exp(), 210, 230

Explicit Expression, 967

expml(), 210

Expression, 11, 194, 296, 316, 400, 433, 463, 572, 945, 953,
969, 993, 999, 1084 -

Extensible Markup Language (XML), 1028, 1103, 1123, 14,
15,157

extract(}, 218, 230

F

family tree, 215

FeatureDescriptor, 296, 303, 304, 309, 316

file permissions, 219

FileUpload control, 625, 645, 646

FilterChain, 327

FilterConfig, 327

FilteredRowSet, 543, 553, 554, 561

flexible, 200, 212, 219, 291, 325, 695, 696, 750

float, 166, 171, 179, 208, 209, 210, 401, 496, 512, 629, 630,
1261, 1315, 1319

Floating point numbers, 169

Floating Point, 209

foreach loop, 188, 190, 215, 216, 222, 229, 1270

foreach, 156, 164, 188, 190, 197, 215, 216, 222, 229, 1270

foreign keys, 247, 248, 257

Form Elements, 235, 236

Form Interpreter (FI}, 156

FormView Class, 815, 816

FormView Control, 797, 798, 814, 817, 818, 867

fwrite(), 223, 233, 234

G

GenericServlet, 320, 326, 328, 334, 337, 387

GET or POST, 1120, 1272, 1295, 156, 164, 332

get{), 239, 240, 241, 242, 258, 259, 307, 355

Global Variable, 202

Globalization, 942, 943, 945, 946, 948, 949, 950, 951, 989,
1239

GNU General Public License, 156

Graphic Interchange Format(GIF), 157, 164

GridView Class, 799, 801, 802

GridView Control, 797, 798, 802, 803, 837, 867

GroupName property, 673

H

hexadecimal, 151, 169, 178, 205, 210

Hidden Field control, 625

hostname, 127, 251, 252, 253, 255, 256, 258, 1138, 1214
HotSpots property, 650, 651

HoverMenuExtender control, 1256
HttpServletRequest, 1172, 1178, 1182, 1186, 1190
HttpServletResponseWrapper, 329, 330
HttpSessionListener, 329

HttpUtils, 329, 330, 374

human-readable, 1295

HyperLink Control, 621, 626, 665, 666

Hypertext Preprocessor, 155, 156, 163, 166, 200, 219

1
iD property, 623
ID property, 824
idate(), 208
implode ():, 203
ImportCatalogPart class, 777, 778
ImportCatalogPart control, 776, 777, 778, 796
in_array(), 218
Increment/ Decrement Operators, 172, 174
index position, 170
index position, 783
IndexedPropertyChangeEvent, 296, 316
IndexedPropertyDescriptor, 296, 316
ini_set(), 274, 280
Init event, 754
INT(), 254
Internationalization, 946, 948, 949, 989
Internet Information Server (IIS), 159, 163
Introspection, 295, 315
Introspector, 294, 297, 312, 316

J

fJava Virtual Machine, 159, 163, 283, 318, 324, 327
Java Virtual Machine, 393

Joint Photographic Experts Group (JPEG),, 157, 164
jsplnit(), 395, 396, 404, 406

JSTL formatting tags, 446, 447, 464

JSTL SQL tags, 443, 464

JSTL XML tags, 459, 464
K
key(), 1075, 1078
key(f), 216
krsort(), 218
ksort(), 218
L

LayoutEditorPart Class, 784
LayoutEditorPart control, 783, 784
LinkButton Control, 621, 626, 667, 668, 669

1351

Index

LingDataSource Class, 847, 849

LingDataSource Control, 797, 798, 846, 850, 852, B67, 868

list(}, 219, 355

Localization, 945, 948, 949, 953, 970, 978

Iocaltime(), 208, 230

LOCK_EX, 227, 232

LOCK_NB, 227, 232, 233

LOCK_SH, 227, 232

LOCK_UN, 227, 232

log file, 275, 280, 327

log(), 209

Login Class, 871

Login control, 870, 871, 872, 875, 887, 890, 893, 594, 875,
876, 894, 1242

LoginStatus class, 875

LoginStatus control, 874, 875, 891, 894

LoginView Class, 873, 874

LoginView control, 873, 874

LONGBLOB, 254

LONGTEXT, 254

looping statements, 42, 153, 182, 187, 193, 200

Itrimy), 205

M

MaskedEditExtender control, 1256
MaskedEditValidator control, 1256
max(), 211

MaximumValue property, 735
MediaPlayer Class, 1022
MEDIUMBLOB, 254

MEDIUMINTY(), 254

MEDIUMTEXT, 254

Menu Class, 691, 711, 713, 714

Menu Control, 691, 714, 716
MethodDescriptor, 296, 297, 303, 308, 309, 310, 316
microtime(), 208, 271, 272, 273, 274, 279
min(], 211

MinimumValue property, 735

mkdir(), 227

Model-1 architecture, 287

Model-2 architecture, 292

modulo, 210

money_format{), 205
multidimensional array, 215

multiline comments, 160

multimedia formats, 993
Multipurpose Internet Mail Extensions, 107, 156, 164

N

National Institute of Standards and, 273
natural logarithm, 209

nested if-else statements, 186, 195

nested looping statement, 191

Nested Master Page, 12, 564, 565, 897, 901
Networking tags, 440

1352

Nodes property, 695, 700
Numeric arrays, 214, 232

0

ObjectDataSoutce Class, 853, 856

ObjectDataSource Control, 797, 798, 853, 857, 859, 867

octal, 151, 169, 178, 211, 230

octdec(), 211, 230

ODBC, 283, 466, 467, 468, 469, 476, 489, 492, 493, 560, 561,
579

opendir(), 229

Operator precedence, 175, 1269

Operator property, 740

Output Feedback (OFB), 274, 280

overloading, 200

P

Page.xaml file, 1003, 1004, 1005, 1006, 1010, 1013, 1020,
1023

PageCatalogPart control, 773, 774, 796

pageContext, 394, 395, 404, 405, 406, 407, 408, 431, 432,
433, 447, 454, 456

ParameterDescriptor, 297,309, 310, 316

ParameterMetaData, 473

Params, 424

Params, 613

PasswordRecovery Class, 877, 878

PasswordRecovery control, 876, 877, 878, 879, 886, 894

pattern matching, pattern substitutions, 157, 164

period, 2, 107, 173, 180, 329, 351, 364, 388, 715, 926, 943,
946,1235

Persistence, 293, 295, 314, 316

PersistenceDelegate, 296, 297, 316

Personal Home Page., 156

php.ini, 274, 276, 280

PHP/FL, 156, 162, 163

phpinfo(}, 250, 259, 260

pi(), 211

PlaceHolder control, 625, 641, 642, 691

Plugin, 423, 1005

Post Decrement, 174

Post Increment, 174

Post Office Protocol 3 (POP3), 157, 164

post(), 239, 240, 241, 242, 259

pow(), 211

Practical Extraction and Report Language (Perl), 159, 163

Pre Decremen, 174

Pre Increment, 174

PreparedStatement, 467, 473, 474, 479, 483, 484, 488, 490,
491, 494, 495, 496, 497, 498, 499, 517, 519, 520, 522, 523,
525, 526, 527, 530, 534, 535, 537, 544, 559

PreRender event, 754

prev(), 216, 219

Proactive process recycling, 926, 943

programming goals, 202

index

properties, 993, 1003, 1006, 1008, 1009, 1019, 1022, 1024
PropertyChangeEvent, 297, 309, 312, 313, 314, 316
PropertyChangeListener, 296, 297, 313, 315
PropertyChangeListenerProxy, 297,316
PropertyChangeSupport, 297, 313, 316
PropertyDescriptor, 296, 297, 303, 304, 305, 306, 307, 308,
309, 311, 316
PropertyEditor, 296, 305, 315, 422
PropertyEditorManager, 297, 316
PropertyEditorSupport, 297, 316
PropertyGridEditorPart control, 786, 787
ProtectSection method, 922, 928, 929, 943
ProxyWebPartManager class, 762
ProxyWebPartManager control, 761, 762, 796
public key and private key, 270

Q
query_string, 239

R

rand(}), 208, 209

RAND_MAX, 209

range(), 219

RangeValidator control, 732, 735, 736, 737, 748

Reactive process recycling, 926, 943

real numbers, 169

Recursive function, 211, 230

redundancy, 246, 248, 260

RegularExpressionValidator control, 732, 737, 738, 739

Relational Database Management System (RDBMS, 250

Repeater Control, 797, 798, 823, 825, 867

request delegation, 351, 352

RequestDispatcher, 319, 327, 351, 352, 386, 387

RequestDispatcher, 438, 439

RequiredFieldValidator control, 732, 733, 734, 737, 746,
747

reset(), 115, 216, 219

Reusability, 200, 230

rmdir(), 228

RootSectionGroup property, 923

ROT13 algorithm, 271, 276

RowSetMetaData, 480, 546

S

scandir(}, 229

Script style, 158, 163

Script Support, 1238

Scriptlet tag, 399

ScriptManager Class, 1240, 1241, 1242

ScriptManager control, 910, 985, 1015, 1019, 1020, 1239,
1240, 1241, 1242, 1246, 1250, 1251, 1258, 1265, 1266

ScriptManagerProxy class, 1246

ScriptManagerProxy control, 1239, 1246

ScrollDownimageUrl property, 712

ScrollUpImageUr] property, 713

secret key, 270, 271, 279

Secure Hash Algorithm 1 (SHA1, 270

security Flag, 262

SERVER ['REQUEST_METHOD'], 241, 242

ServietConfig, 317, 326, 327, 331, 332, 334, 335, 361, 386,
387, 388, 394, 396, 404, 406, 1150

ServletContext, 317, 320, 326, 327, 328, 334, 386, 387, 394,
404, 406

ServletContextAttributeListener, 327

ServietContextListener, 327

ServletException, 1172, 1178, 1179, 1182, 1186, 1190

ServletlnputStream, 320, 328, 344, 387

ServletOutputStream, 320, 328

ServletRequest, 287, 320, 327, 328, 330, 351, 387, 396, 447

ServietRequestAttributeListener, 327

ServletRequestListener, 326, 327

ServletRequestWrapper, 328

ServletResponse, 287, 320, 327, 328, 330, 351, 396

Session handling, 386

Short style, 158, 162, 163

ShowMessageBox property, 746, 748

ShowSummary property, 746

Silverlight class, 1019, 1022

Simple Master Page, 897

SimpleBeanInfo, 297, 303, 306, 309, 311, 312, 315, 316

sin(}, 211

Single line comments, 16

SingleThreadModel, 327, 328, 330

SiteMapDataSource Class, 865, 867

SiteMapDataSource Control, 797, 798, 865, 867

SiteMapPath Class, 691, 722, 723, 724

SiteMapPath Control, 691, 723, 724

SiteMapPath Style, 725

SiteMapPath Templates, 725

SMALLINTY{), 254

SMTP, 6, 14, 15, 157, 164, 326, 878, 882, 887, 8%, 931, 932,
936, 938, 943, 944, 1299

SORT_REGULAR, 218

SQL queries, 254, 466, 467, 476, 477, 495, 501, 560, 833

SqlData, 467

SglDataSource Class, 834, 836

SglDataSource Control, 797, 798, 833, 836, 837, 867

sqrt(), 211, 230

sscanf(), 205

Static menu, 714

Stored procedures, 499

Struts, 1225

Struts, 401

Struts, 528

StyleSheetTheme Attribute, 895, 918

substr_count(), 205

substr_replace(), 205

Sys.Debug class, 1237

System.Globalization Namespace, 946

System.Resources Namespace, 947

System Web.UL ExtenderControl abstract base class, 1254

1353

index

T

taglib, 408, 410, 431, 436, 439, 441, 444, 446, 447, 451, 453,
456, 457, 460, 464

tan(), 211

Technelogy (NIST), 273

Text Box, 236, 237, 243

time(}, 263, 208, 230, 231, 263, 264, 277

TIME, 254, 477, 512

Timer Class, 1247

TIMESTAMP, 254, 512

TINYINT(), 254

TINYTEXT, 253, 255

Transform property, 715, 862

TransformFile property, 715, 862

TreeView Class, 691, 692, 694

TreeView Control, 691, 694, 695, 696, 700, 701, 704, 708

trim(), 205

tuples, 247, 249

Type Casting, 171

Type property, 735, 740

ucfirst(), 205

ucwords(), 205

UlICulture value, 950, 951, 990

uksort(), 219

UnavaijlableException, 328

uninitialized, 1121, 1163

unique identifier, 267, 278, 475, 537, 758

UniquelD property, 568

Unix Timestamp, 207, 208

Unix timestamp, 207, 208, 231, 262

Unload event, 754

unset(), 168, 171, 176, 177, 266

UPDATE, 249, 256, 475, 485, 490, 504

UpdatePanel Class, 1248

UpdatePanel control, 1239, 1241, 1244, 1247, 1248, 1250,
1251, 1253, 1257, 1258, 1265, 1266

UpdateProgress Class, 1251

UpdateProgress control, 1239, 1248, 1250, 1251, 1252,
1253, 1265

URL rewriting, 318, 364, 365, 369, 370, 371, 372, 374, 375,
1110

useBean Tag, 418

User-Defined Functions, 199, 200

usort(), 219

1354

v

valid(), 216, 217

ValidationGroup property, 732, 748
ValidationSummary control, 732, 745, 746, 747, 748, 872
var_dump, 206, 207

VARCHAR(), 253

variable functions, 211

Variable Scope, 201
VetoableChangeListener, 296, 297, 313, 315
VetoableChangeListenerProxy, 297, 316
VetoableChangeSupport, 297, 313, 316
viprintf(), 205

Visibility, 296, 315, 1185

Visible property, 1241, 1247

vprint{(}, 205

w

web.config file, 600, 605, 608, 612, 618, 874, 894, 902, 910,
922, 923, 925, 928, 929, 930, 931, 942, 943, 950, 951, 1017,
1240

WebControl Class, 621, 624, 625

WebPartManager Class, 749, 751, 756, 758, 759

WebPartManager control, 750, 751, 752, 753, 754, 755, 756,
757,758, 759, 761, 762, 795, 796

WebPartZone class, 762, 763, 764, 765

WebPartZone control, 762, 763, 764, 765, 783, 795, 796

while loop, 137, 138, 139, 141, 142, 188, 189, 196, 217, 221,
223, 257, 384, 514, 1133, 1154

Wizard Control, 621, 626, 679, 682, 683

wordwrap(), 205

X

XmiDataSource Class, 714, 715, 860, 862

XmlDataSource Control, 716, 797, 798, 860, 862, 867

XMLDecoder, 297, 316

XMLEncoder, 297, 316

XMLHttpRequest Object, 1051, 1116, 1119, 1120, 1157,
1158, 1192, 1232, 1234

xmins attribute, 1002, 1010, 1011, 1013, 1046, 1047

XOR operator, 274, 280

A

Zone, 446, 455, 456, 457, 750, 766, 781, 783
Zonelndex, 783

